
WIRTSCHAFTSUNIVERSITÄT WIEN

MASTERARBEIT

Titel der Masterarbeit:

�Database Clustering mit Fokus auf PostgreSQL�

Englischer Titel der Masterarbeit:

�Database Clustering with focus on PostgreSQL�

VerfasserIn: Dmitry V. Petrovsky, BSc. (WU)
Matrikel-Nr.: 0052912
Studienrichtung: Wirtschaftsinformatik (Mag, WINF-M03)
Textsprache: English
Beurteiler: Univ. Prof. Dipl.-Ing. Mag. Dr. Wolfgang Panny
BetreuerIn: Dipl.-Ing. Mag. Dr. Albert Weichselbraun

Ich versichere:
dass ich die Masteratsarbeit selbstständig verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe. dass ich

die Ausarbeitung zu dem obigen Thema bisher weder im In- noch im Ausland (einer Beurteiler-
in/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.
dass diese Arbeit mit der vom Betreuer beurteilten Arbeit übereinstimmt.

Datum Unterschrift

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Abstract

This paper gives a complete overview of the existing clustering approaches,
from theory to practice. It starts with an overview of general clustering tech-
nologies, provides high-level cluster terms de�nitions and outlines possible
issues a database cluster may encounter. It then goes further and examines
popular commercial database products (Oracle and DB2) as well as their
Open Source counterparts (MySQL and PostgreSQL), outlining their fea-
tures, replication methods used and pays special attention to concurrency
control and locking. The thesis provides an in-depth analysis of both -
commercial and Open Source solutions, highlighting their advantages and
disadvantages in the light of implementing a cluster.

Apart from information safety and asymmetry the thesis also addresses a
number of problems which could be solved by a database clustering and
caching system, such as load balancing, transparent failover and defect
nodes replaceability.

The primary focus of this work is on the research of the available clus-
tering approaches and technologies in PostgreSQL. Therefore, the paper
examines a number of commercial and Open Source frameworks, based on
the pre-de�ned requirements. The contribution lies in a direct compari-
son between PostgreSQL clustering products, available features, in spelling
out advantages and drawbacks of each solution and in making a product
recommendation based on the possible area of usage. Based on the analy-
sis, selected PostgreSQL clustering frameworks are installed, con�gured and
evaluated. Using the theoretical material on database replication and the
known problem described in this work, a number of tests were designed in
order to evaluate and compare the frameworks in question. The results of
the research conclude this work.

2 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Kurzfassung

Diese Arbeit gibt eine komplette Übersicht über existierende Clustering-
Technologien, von Theorie bis Praxisanwendung. Als Einführung wird ein
allgemeiner Überblick über Clustering-Technologien gegeben. Danach wer-
den high-level clusterrelevante Begri�e vorgestellt und mögliche in einer
Clustering-Umgebung auftretende Probleme skizziert. Darauf folgend wer-
den die populärsten kommerziellen (Oracle und DB2) als auch Open Source
Produkte (MySQL und PostgreSQL) behandelt. Es werden Features und
Replikationsansätze ausführlich beschrieben. Der Concurrency-Kontrolle
und dem Locking wird dabei besondere Aufmerksamkeit gewidmet. Die Ar-
beit liefert eine detaillierte Analyse von beiden - kommerziellen und Open
Source Datenbanklösungen und beschreibt ihre Vorteile und Nachteile im
Bezug auf Clustering-Umgebungen.

Abgesehen von Informationssicherheit und Informationsasymmetrien wird
auch eine Zahl von diversen Problemen behandelt, die durch den Einsatz
vom Cluster- und Cachingssystem gelöst werden können: load balancing,
transparent failover und die Austauschbarkeit von ausgefallenen Nodes.

Das primäre Ziel der Untersuchung liegt in Analyse von vorhandenen Post-
greSQL basierten Clustering-Lösungen. Demzufolge wird eine Reihe von
kommerziellen und Open Source Frameworks in Betracht gezogen. Der Ar-
beitsbeitrag liegt in einem direkten Vergleich zwischen diversen PostgreSQL
Clustering-Produkten und ihren Features. Die Vorteile bzw. Nachteile
der einzelnen Clustering-Lösungen werden genau erläutert. Basierend auf
dieser Analyse wird eine Produktempfehlung abhängig von möglichen Ein-
satzmöglichkeiten abgegeben. Basierend auf dieser Analyse werden aus-
gewählte PostgreSQL Clustering Frameworks installiert, kon�guriert und
evaluiert. Anhand von der in der Arbeit vorgestellten Theorie über die
Datenbankreplikation und damit verbundenen Problemen, wurde eine Zahl
von Tests entwickelt, um die genannten Frameworks besser evaluieren und
vergleichen zu können. Die Ergebnisse der Recherche schliessen diese Arbeit
ab.

3 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Contents

Abbreviations 7

List of Figures 9

List of Tables 10

I. Theory 11

1. Introduction 12
1.1. Database clustering and its importance 12
1.2. Paper outline . 13

2. Clustering approaches 15
2.1. Introduction to Database Replication 16
2.2. Eager vs. Lazy Replication 17
2.3. Replication in a cluster . 19
2.4. Known problems of traditional approaches 21

2.4.1. Con�icts Management 21
2.4.2. Communication Overhead 22
2.4.3. Transactions and Isolation levels 22
2.4.4. Fault tolerance . 23

2.5. Summary . 23

3. Implementations 25
3.1. Commercial products . 27

3.1.1. Oracle Real Application Cluster 28
3.1.2. DB2 Enterprise Server Edition 34

3.2. Open Source Solutions . 41
3.2.1. MySQL Cluster . 42
3.2.2. PostgreSQL . 46

3.3. Summary . 50

Contents 4 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

II. Application 51

4. Database clustering in PostgreSQL 52
4.1. Commercial Products . 54

4.1.1. Mammoth Replicator 55
4.1.2. Cybercluster . 56
4.1.3. Continuent Tungsten Enterprise 57

4.2. Open Source Solutions . 59
4.2.1. Log shipping . 60
4.2.2. Postgres-R . 61
4.2.3. PGCluster . 62
4.2.4. Londiste . 63
4.2.5. Bucardo . 63
4.2.6. PGPpol-II . 65
4.2.7. Slony-I . 66

4.3. SkyTools . 67
4.4. Summary . 70

5. Evaluation 72
5.1. Test cases design . 72

5.1.1. Cluster architecture 73
5.1.2. Database schema 74
5.1.3. PGPool-II Con�guration 76
5.1.4. Slony-I Con�guration 77
5.1.5. Londiste . 78
5.1.6. Test cases . 79

5.2. Test case 1 - PGPool . 81
5.3. Test case 2 - Slony . 84
5.4. Test case 3 - Londiste . 86
5.5. Evaluation . 88

6. Outlook and conclusion 91

A. Appendix: PGPool configuration 93

Contents 5 of 106

B. Appendix: Slony configuration 94

C. Appendix: Londiste configuration 97

References 99

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
ANSI American National Standards Institute
API Application Programming Interface
B2B Business-to-Business
BSD Berkeley Software Distribution
C2B Customer-to-Business
CGE Carrier Grade Edition
CS Cursor Stability
DBMS Database Management System
DDL Data De�nition Language
DML Data Manipulation Language
DSS Decision Support System
GIS Geographic Information System
GiST Generalized Search Tree
HADR High Availability Disaster Recovery
IDIOM Information Di�usion across Interactive Online Media
ISO International Organization for Standardization
IT Information Technology
JDBC Java Database Connectivity
LCR Logical Change Record
LDAP Lightweight Directory Access Protocol
LOB Large Object
MD5 Message-Digest Algorithm 5
MQ Message Queue
MS Microsoft
MVCC Multi-version Concurrency Control
NDB MySQL In-memory Clustered Storage Engine

Contents 7 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

OLTP Online Transaction Processing
OS Open Source
OSS Open Source Software
PAM Pluggable Authentication Modules
PgQ Generic High-Performance Queue for PostgreSQL
PgSQL Loadable procedural language for the PostgreSQL
RAC Real Application Cluster
RBR Row Based Replication
RR Repeatable Read
RS Read Stability
SBR Statement Based Replication
SE Standard Edition
SQL Structured Query Language
TCO Total Cost of Ownership
TCP/IP Transmission Control Program / Internet Protocol
WAL Write Ahead Log
XML Extensible Markup Language

Contents 8 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

List of Figures

1. Oracle Streams Architecture (Orab) 30
2. Oracle Streams Replication (Orab) 31
3. DB2 simple SQL replication (IBMb) 37
4. DB2 simple Q replication (IBMb) 38
5. DB2 event publishing (IBMb) 39
6. Default MySQL Cluster con�guration (Sun) 44
7. MySQL Cluster replication (Sun) 45
8. PostgreSQL Connection Pooler (Oja08) 68
9. Remote Call using plProxy (Oja08) 69
10. Geographical partitioning with plProxy (Oja08) 69
11. Application based partitioning with plProxy (Oja08) 70
12. Load Balancing with plProxy (Oja08) 70
13. Cluster Con�guration . 73
14. Database schema . 74
15. PGPool-II con�guration . 76
16. Slony con�guration with PGPool 77
17. Slony con�guration with SkyTools 78
18. Londiste con�guration . 79
19. PostgreSQL performance 82
20. PGPool performance . 83
21. Slony performance . 86
22. Londiste performance . 87

List of Figures 9 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

List of Tables

1. Oracle isolation levels (Oraa) 33
2. DB2 SQL and Q replication comparison (IBMb) 38
3. Brief key-feature based comparison between MySQL and Post-

greSQL . 48
4. PostgreSQL isolation levels 49
5. Commercial PostgreSQL based products 59
6. PostgreSQL single instance - test results 81
7. PGPool - test results . 82
8. Slony - test results . 85
9. Londiste - test results . 87
10. Performance comparison - test results 89
11. PostgreSQL clustering approaches comparison 89

List of Tables 10 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Part I.
Theory

11 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

1. Introduction

A database management system (DBMS) is a set of software tools designed
to manage a large unit of information which involves setting structures for
data storage and also provides mechanisms for data manipulation. A DBMS
must guarantee the safety and availability of the stored data, despite crashes
or unauthorized access attempts (Tes07).

The IDIOM Media Watch on Climate Change relies on DBMS solutions
as well. It visualizes contextualized information spaces comprising millions
of documents, allowing a user to navigate through its repository alongside
multiple dimensions and to formulate queries based on textual, semantic,
or geospatial criteria. High performance database solutions are required to
support real time browsing and searching of this vast document collection
and are very important.

1.1. Database clustering and its importance

Business processes are enacted manually, guided by the knowledge of the
company's employees. Additional bene�ts can be achieved if organizations
use DBMS for coordinating the activities involved in their business pro-
cesses (Wes07). The DBMS can separate data from applications which
enables the design and development of business applications with business
process separation in mind and makes such applications more �exible and
less dependent on data changes. Trying to achieve the e�ciency of business
processes automation and this way to gain a competitive advantage more
and more enterprises invest heavily in DBMS (GGK+05; Wes07). With the
rapid development of B2B and C2B solutions the access to data plays a key
role, therefore access to information within an organization is often vital
for its business processes. The loss of the information (e.g., as a result of
a natural disaster, a hardware failure or a simple mistake of an employee,
etc.) may have unpredictable consequences (Tes07).

Introduction 12 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Database replication technology is the key to shared-nothing database clus-
ters which are a popular solution to multi-tier applications (JP03). First
approaches to database replication had a number of serious limitations, but
the recent development in communication protocols and replication exten-
sions made the way for new replication algorithms that are able to o�er
highly e�cient, consistent, fully replicated and error prone systems (JP03).
Such advances are now making the transition from the research labs to con-
crete products and applications and are the research subject of this research
paper.

1.2. Paper outline

The thesis follows an incremental approach. The �rst chapter introduces
high level elements of database clustering and shows how fully �edged
database solutions could be built. It starts with the description of the
main goals and challenges and provides a comprehensive overview of the
main clustering approaches. Then it goes further and provides an overview
of the existing database technologies and their clustering implementations,
considering the potential bene�ts outlined above with a main focus on Post-
greSQL.

The third chapter aims at providing a thorough overview of the available
clustering approaches implemented in databases. It reviews the replication
methods used, examines locking and concurrency support, outlines advan-
tages and weak points. The most popular and widely used commercial and
OS products are carefully examined and compared based on its features.

The fourth chapter introduces the available clustering frameworks based
on PostgreSQL. Commercial and Open Source solutions are analyzed and
reviewed. It outlines a number of criteria, how a suitable clustering solution
should look like, de�nes the key-technologies and based on the pre-de�ned
schema, the best solutions are chosen for testing and benchmarking.

1.2 Paper outline 13 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

The �fth chapter is concerned with an analysis of case studies. A simple
cluster is designed, the selected PostgreSQL clustering frameworks are setup
and tested. The tests benchmark results are introduced in this chapter as
well. Finally, the author draws conclusions and gives an outlook to possible
future developments based on the research made.

1.2 Paper outline 14 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

2. Clustering approaches

This chapter gives an introduction and outlines a de�nition to database
clustering and replication. It provides an overview of the advantages, dis-
advantages and known problems of traditional solutions. It elaborates on
the main drawbacks of the traditional approaches, underlining avoidable
limitations, analyzes current trends and tries to �nd a state-of-the-art solu-
tion based on the research made in the area of the database replication.

There are lots of de�nitions what clustering is and a dictionary might de-
scribe clustering as a �group of related items� 1, what would be perfectly
correct, but for a database we may rephrase it as �grouping of related items
stored together for e�ciency of access, resource utilization and information
safety� (Ver).

The primary cluster components are processor nodes, a cluster interconnect
and a disk subsystem. The clusters share disk access and resources that
manage the data, but each distinct node does not share memory. While
clustering is a very popular term, it does not have a well de�ned meaning
with regard to database systems. Lots of di�erent techniques, like replica-
tion, load balancing, distributed querying, etc., are called clustering here
and there 2. In general, a cluster is a real-time distributed transactional
database designed for fast, always-on access to data under high through-
put conditions. It consists of a number of interconnected by a dedicated
high-speed network database servers (KGK95).

Each database server is called a node, meaning a database participating in
replication, and depending on its function it could be further subdivided
into the following categories (EN03):

• a master node is the main server which coordinates and monitors all
other nodes and actions. Depending on an action triggered a master
node �res o� a responsible slave node to perform an operation. A

1http://www.merriam-webster.com/dictionary/cluster
2http://www.postgres-r.org/documentation/terms_3

Clustering approaches 15 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

master node may also be responsible for load balancing and query
partitioning. In order to boost cluster's performance, it is advised to
have a couple of master nodes.

• a slave node has a single function it is responsible for, it could be
further subdivided into di�erent categories, e.g.: Log Node, User Node,
Data Node, etc. All slave nodes are coordinated by a master node. In
most cases, a slave node is a data node, i.e., it is used to save the data.
If a load balancer is con�gured, some slave nodes are used to serve
read-only requests, while the other ones process write queries and then
replicate the changes with the other nodes in the cluster.

• a stand-by node is a reserve server which does nothing. In case of a
master node failure it starts o� and takes the place of the master node.

A database cluster may have di�erent constellations. Depending on needs
or complexity of a particular project, a cluster may have di�erent con�gu-
rations (EN03):

• master to multiple slaves is the simplest and most common con�gura-
tion. A master server is used to manage its slave nodes.

• multi-master to multiple slaves � if high-availability is an issue, then
multi-master architecture is the right way to go. In case a master-server
goes down, another one takes its place, thus ensuring the further cluster
availability.

2.1. Introduction to Database Replication

There are two known kinds of database replication: full replication, when
each node has a full copy of the database and partial replication, when parts
of a single database are distributed between the nodes (Mat97). The access
to the database is implemented using transactions which are read or write
operations. The essential part of a cluster implementation is concurrency
and replica controls. Concurrency control provides each transaction with

2.1 Introduction to Database Replication 16 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

the needed isolation level and replica control manages the access to the
nodes in a cluster.

Another important point to consider while implementing a clustering solu-
tion is the data consistency. In this respect, there are some criteria which
specify the data's correctness. The strongest one is 1-copy-serializability
(BHG87), i.e., although each node stores separately a copy of a database,
each copy is identical to each other and access to any node in a cluster
returns the same result. Transaction atomicity has to guarantee that the
commit operation applies changes to all nodes or none. It has to be noted
though, that due to performance considerations not all protocols can guar-
antee atomicity.

The changes could be applied to the nodes in a cluster within a transac-
tion, in this case the replication is eager, or after it commits, meaning the
replication is lazy (BK97). Each of these approaches has its advantages and
disadvantages. The �rst one insures a higher degree of data consistency and
can detect possible con�icts before the commit operation, but results in a
signi�cant and very expensive communication overhead within the transac-
tion. The lazy replication on the other hand consumes changes after the end
of the transaction which might cause some data inconsistencies (BK97).

There are two known approaches to the nodes replication - primary copy,
when all updates are executed on primary server �rst, and a distributed ap-
proach which allows any copy to be updated. The �rst approaches simpli�es
the concurrency control substantially, but may also result in a single point
of failure. The lazy replication may cause a number of problems: when a
couple of transactions update di�erent copies of the same data and commit
locally, it results in a data inconsistency (BK97).

2.2. Eager vs. Lazy Replication

To implement eager replication is quite straightforward: for example a 2-
phase-locking, timestamp based algorithms and 2-phase-commit could be

2.2 Eager vs. Lazy Replication 17 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

used to guarantee serializability and atomicity. The majority of algorithms
implementations try to avoid centralized primary copy approach in favor of
the update everywhere approach, e.g., read-once/write-all requires updates
to access all the nodes while read operations are executed locally. Such
an approach is considered to be not very reliable, as an update process
freezes if one of the nodes is not available. Therefore another approach is
more favorable in this respect - read-one/write-all-available which executes
updates only on the available nodes (BHG87).

There are a number of quorum protocols, requiring both operations (read
and write) to access a quorum of nodes (AEAS97; HSAA99). As soon
as a quorum of available nodes agrees on execution, the operation can be
processed. On the other hand, using an optimistic approach suggests to ex-
ecute transactions locally and broadcast the changes in some ordered form.
In case of a con�ict, a causing transaction has to be rolled back. Such an
approach is called an epidemic update propagation and is very similar to a
2-phase-commit. Furthermore, multicast primitives with di�erent ordering
could be used for updates propagation which results in a reduced number
of roll back operations (SAA98).

The eager replication approach guarantees the data consistency, but despite
of this fact, it is not widely used. Oracle Advanced Replication implements
an eager protocol, using stored procedures and triggers. As soon as an
update is applied locally, a stored procedures �res up an event and launches
a synchronous replication which locks the corresponding remote entries.
Oracle itself recommends to use eager replication only if the data consistency
has the highest priority and therefore it should be avoided in the majority
of cases as it is highly dependent on network availability (Tum04).

Lazy replication dramatically reduces the transaction execution time, as
updates are committed locally and only sent to the other nodes. Some
lazy replication implementations can only ensure that all nodes eventually
converge to a single �nal value, regardless of the transaction dependencies.
Such an approach could not guarantee atomicity in any case, i.e., in case a
node fails before the updates of a committed transaction are propagated, the

2.2 Eager vs. Lazy Replication 18 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

transaction gets lost. The majority of the lazy replication implementations
use a primary copy approach - updates must be executed on a master node
and then propagated to the slaves, the direct slave nodes updates are not
allowed at all. The huge disadvantage of this approach which could not be
avoided though, is that all the nodes could not be kept synchronized at all
times.

Using lazy replication, serializability cannot be guaranteed in every case,
but the recent researches in this area provide a possible solution to this
issue (CRR96). The main idea is the primary and secondary copies alloca-
tion, using con�guration graphs where there is a non-directed edge between
two nodes if one has the primary copy and the other a secondary copy.
If it is an acyclic graph, then the serializability can be achieved by up-
dates propagation on transaction commit (CRR96). This approach was
enhanced by allowing certain cyclic con�gurations which however require
more complex update propagation algorithms, e.g., updates to secondary
copies must be applied causal (PSM98; PMS99). An alternative solution is
to eliminate cycles - edges are directed from a master to a slave which leads
to the introduction of sophisticated update propagation strategies, e.g., to
transform graphs into a tree thus a master is not required to be directly con-
nected with all its slaves. The updated are applied along the paths of the
graph (BKR+99). On the other hand, each transaction could be assigned a
timestamp, this way a total order of to be executed transaction is de�ned.
Another proposed strategy is to combine lazy with eager propagation and
to use lazy propagation along the acyclic paths and eager replication for
cyclic paths (BK97; ABKW98).

2.3. Replication in a cluster

The goal of using a database cluster is to distribute the workload among
the nodes and to achieve scalability and fault tolerance. As the workload
increases, new nodes are added to adapt the system performance accord-
ingly. In case one node goes down, it does not e�ect the system availability

2.3 Replication in a cluster 19 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

as a whole, the other nodes take over the work over the failed ones. Be-
sides work load distribution, a database cluster could be used to partition
the data among the sites, where each site is responsible for execution of
queries on speci�c data. The known limitation in this respect are: in the
�rst place, it is not easy to divide the data and to distribute the work load
accordingly. Another problem to consider is transaction management, e.g.,
in case a transaction wants to access data on di�erent partitions. The more
serious situation arises, when individual nodes responsible for a particular
data partition fail which results the data inaccessibility. In order to avoid
some of the above listed problem, data replication is required. The following
strategies could be followed:

• load balancing � the sole purpose of a load balancing, as the name sug-
gests, is to adjust and coordinate the load between database instances.
On the other hand, it could be seen as a security layer as well, e.g.,
logically and physically dividing database instances to the ones which
store only read-only data and the ones with read-write access (FAA99).

• fault tolerance � using eager replication a system availability could be
guaranteed, as long as at least one node is accessible.

• data consistency � database clusters have the goal to manage high
volumes of data, therefore a proper handling of inconsistencies is ex-
tremely important and could not be done manually. The replica con-
trol has to detect and eliminate any inconsistency automatically and
transparently.

• transaction management � all the updates have to be executed on all
dependent nodes. If this is not the case, individual nodes must be able
to subscribe, receive and apply the necessary changes fast at any time.

Considering these strategies, it is obvious that the eager replication is the
most desirable one in the light of cluster computing, it guarantees data
consistency, enables fault tolerance and at the same time simpli�es workload
distribution, however it su�ers a severe performance hit (BKR+99).

2.3 Replication in a cluster 20 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

2.4. Known problems of traditional approaches

Eager replication sounds like the �rst choice when it comes to database
replication, at least in theory. The major drawback is the huge performance
penalty. The interesting point here is the limitations of eager replication and
whether it is possible to avoid them. We are going to analyze and discuss
traditional replication approaches, their impact on cluster performance and
complexity, and the possibilities of avoiding the known issues by use of an
adequate technology.

2.4.1. Conflicts Management

One of the main problems of eager replication is the con�ict rate and a pos-
sibility of deadlocks. The approximate estimates of deadlocks in di�erent
scenarios is directly proportional to n3, where n stands for number of nodes
(GHOS96). The more transactions accessing the same data and the more
nodes exist in the system, the more time is required to lock the correspond-
ing entries, resulting in a longer transaction execution time. Another point
to mention is that transactions execution time increases due to communi-
cation overhead which by itself may cause con�icts and deadlocks.

Transactions pre-locking techniques could be used to reduce the rate of
con�icts and possibly to avoid deadlocks, e.g., to use group communication
systems (HT93): the idea is to multicast the messages which ensures that
the same total number of messages is distributed within the communication
group. Therefore, the messages are sent in a single operation and are re-
ceived by all the nodes in the same order. Locks are granted in the order the
messages arrive which guarantees the same updates on all nodes in exact
order. If a node goes down, it would still receive the update messages in the
right order, as soon as it becomes available. More than that, in this way
the deadlock problem could be solved (HT93; BKR+99).

2.4 Known problems of traditional approaches 21 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

2.4.2. Communication Overhead

The most protocols execute the incoming updates individually, i.e., each
message triggers two messages - a request and its acknowledgement, what
results in 2n number of messages. The problem of this approach is quite
obvious, the more nodes are in a cluster, the more messages are being sent.
For instance, if a cluster consists of 10 nodes and an average number of
transactions which take place per second is 100, and each transaction has
�ve update operations, this would lead to 9.000 messages per second in a
point-to-point connection. Starting a transaction a master node has to wait
until all the acknowledgements from all nodes participating in a transaction
are received, i.e., the transaction is stalled. Thus such an approach would
produce a huge amount of tra�c, increase complexity and dramatically
damage the performance of a cluster.

To minimize the overhead the write operations eager replication algorithms
bundle write operations in a single write set message instead (very much
like lazy replication approach) and move it to the end of the transaction.
Such a technique greatly improves the message throughput and increases
the performance in general.

2.4.3. Transactions and Isolation levels

The levels of transaction isolations are speci�ed in the SQL standard (KKH08;
BBG+95). There are a number of isolation levels databases are using. Gen-
erally, it could be seen as a trade-o� between performance and data cor-
rectness in order to reduce the possible con�icts between transactions. In
some cases signi�cant performance boosts could be achieved at the price of
temporary data inconsistencies. The supported isolation levels varies from
database to database, therefore they are separately discussed in the next
chapter.

2.4 Known problems of traditional approaches 22 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

2.4.4. Fault tolerance

Fault tolerance is one of the critical issues for database clustering and it
introduces a considerable amount of overhead in order to provide it. The
majority of traditional approaches use commit protocols to guarantee the
atomicity of a transaction. Such a commit protocol has a big impact on
the cluster performance, as the transaction execution time is equal to the
response time of the slowest node. The nodes in a cluster agree to commit
a transaction when all of them can guarantee a local commit which is the
point when a transaction is being executed. Because of this, eager repli-
cation is used with a dedicated hardware equipment in dedicated network
environments, where network availability could be guaranteed.

In order to avoid such a problem and at the same time to improve cluster
performance, it is recommended to weaken full correctness checks. Thus a
local commit is allowed independent if other nodes could execute a transac-
tion or not. This way, the local transaction is not required to wait for other
nodes to acknowledge the request and commit a transaction. The master
node optimistically assumes that other nodes in a cluster will serialize the
transaction the same way (AAA+96).

2.5. Summary

The major terms, de�nitions, techniques and possible areas of problems
used in a cluster environment were introduced in this chapter. We gave a
de�nition to a cluster, described underlying technologies and underlined the
di�erences in between traditional approaches. Very generally we have also
outlined the possible areas of problems connected with database replication
based on a replication method used. It has to be noted though, that it is
rather not possible to provide a common solution to the described problems,
but rather the whole cluster con�guration and the underlying database has
to be taken into consideration, as the di�erences in implementations are
quite huge. Therefore, a detailed database solutions overview is required

2.5 Summary 23 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

in the �rst place which is given in the next chapter. The problems de-
scribed in this chapter are addressed in the chapter �Evaluation�, where
di�erent frameworks using both lazy and eager replications are tested and
compared.

2.5 Summary 24 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

3. Implementations

There are a huge number of database solutions on the market today and
with the recent advances in the OS world it is not necessary to invest a
fortune to build a database cluster. But it is rather possible to take ad-
vantage of OS solutions, download a product, set-up a custom cluster and
test it thoroughly before using it in production environment. The online
documentation, community support and product source code make it all
possible to use OS products not only for private purposes but for a com-
mercial implementation as well.

Still the commercial products from Oracle3 and IBM4 are considered to be
market leaders in this area. They claim to provide the best-practice cluster-
ing products available on the market today, listing the rich set of supported
features which would meet practically all possible requirements. The goal
of this chapter is to research, investigate and compare the commercial and
OS solutions, to outline the areas of usage, advantages and drawbacks in
the light of an enterprise, i.e., cluster environment.

First, we are going to introduce the most popular commercial products
followed by their OS counterparts. In order to make a plausible and fair
review, we are going to de�ne an analysis schema for the research:

• a brief description introduces a database product, gives a short de-
scription and depicts the manufacture slogan.

• a features overview provides the general feature overview with the main
focus on the clustering technologies.

• replication technical details provides technical details on the replica-
tion technologies used in the framework in question. Describes the
limitations and underlines advantages of the framework.

3http://www.oracle.com/database/index.html
4http://www-01.ibm.com/software/data/db2/

Implementations 25 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• locking & transaction management introduces the locking and concur-
rency implementation.

A short product description comes �rst, it outlines the database target audi-
ence, its purpose and some particularities. The features overview discusses
supported clustering features and technologies, the di�erences and similar-
ities to the other reviewed products are stressed.

The chapter starts with the analysis of the most advanced enterprise prod-
ucts in the commercial world: DB25 and Oracle6, giving an overview based
on the schema de�ned above. Then it introduces the most commonly used
OS solutions, such as MySQL Cluster7 and PostgreSQL8, highlighting their
approaches, advances and philosophy, outlining the major features and com-
paring the frameworks not only to the commercial products but also to each
other.

Finally, a feature-based table compares each examined product and sum-
marizes the analyzed products' suitability or non-suitability for building a
cluster for a concrete production environment. Therefore, it is essential
to de�ne, what the production environment is. Thus the cluster has the
following characteristics:

• a high-performance and scalable cluster � it should be able to manage
huge loads of data.

• 24/7 high availability � it should be possible to provide non-stop data
availability.

• data consistency and integrity at any time � information consistency
should be guaranteed.

5http://www-01.ibm.com/software/data/db2/9/edition-enterprise.html
6http://www.oracle.com/database/enterprise_edition.html
7http://mysql.com/products/database/cluster/
8http://www.postgresql.org/

Implementations 26 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

3.1. Commercial products

Oracle and IBM both provide a number of database solutions, not only
for commercial use but also free ones. The free of charge products are
the entry-level database o�erings, i.e., a developer may download it, use it,
deploy and distribute his application free of charge. The source code, as
one would expect, is not provided, the products are distributed in binary
format and are pre-compile for a number of platforms. Such products are
generally used for demonstration purposes, to familiarize a developer with
the product line and have a number of limitations, e.g., as in case with
Oracle, it can only use up to 4GB of user data, use up to 1GB of memory,
and use only one CPU on the host machine9. These are serious limitations,
so the entry level solutions could not be used in any serious project. The
clustering technology is not supported at all.

In order to overcome such limitations and to acquire additional features
(e.g., to build a cluster), a developer is required to download a full version
of the software and acquire a license. Depending on the required features
one may wish to use, the number of concurrent connections and the size of
a database, the license costs may add up quite quickly (Oraa). It must be
also noted, that the license costs are to be payed annually. The decision to
adopt a database solution has to be analyzed very careful as it is very chal-
lenging, time consuming or sometimes even impossible to switch a database
(EN03).

Under commercial products discussed in this chapter, we mean the enter-
prise products from Oracle and IBM - Oracle RAC and DB2 Enterprise
Server Edition respectively. These products have all the de�ned character-
istics of a production clustering database.

9http://www.oracle.com/technology/products/database/xe/index.html

3.1 Commercial products 27 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

3.1.1. Oracle Real Application Cluster

Oracle describes its product as: �. . . an option to the award-winning Or-
acle Database Enterprise Edition. Oracle RAC is a cluster database with
a shared architecture that overcomes the limitation of traditional shared-
nothing and shared-disk approaches to provide a highly scalable and available
database solution for all your business applications. Oracle RAC provides
the foundation for enterprise grid computing.�.10 Oracle supports a wide
range of platforms, provides a very detailed documentation and excellent
support (Oraa). The database product solutions from Oracle have a long
history, are considered to be very reliable and are widely used in the pro-
duction environment. The installation is quite straight forward with the
step-by-step instructions, although the list of pre-requirements, hardware-
and software-wise is quite challenging. It is SQL-standard compliant, shines
with its advanced command line interpreter and GUI interface. It is a highly
customizable and feature-full product which supports not only standard fea-
tures, but goes far beyond them. Oracle database is viewed as an industry
standard for a good reason.

Features overview

Oracle RAC supports all the standard clustering features described in the
previous chapter (shared nothing, shared disk approaches, eager and lazy
synchronization, etc.) by default plus additionally (Oraa):

• Oracle RAC provides single image installation and management

• the transparent deployment of a single database across a cluster of
servers

• it also supports mainstream business applications of all kinds including
OLTP, DSS and Oracle's unique ability to e�ectively support mixed
OLTP/DSS environments (including popular packaged products such
as SAP, PeoplSoft, etc).

10Oracle Data Sheet, http://www.oracle.com/technology/products/database/clustering/pdf/ds_rac11g.pdf

3.1 Commercial products 28 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• the product comes bundled with a complete integrated Clusterware so-
lution which includes mechanisms for cluster messaging, locking, failure
detection, and recovery

• it provides Enterprise Grids, used for dynamic resources allocation

• 3rd party clusterware software is supported as well, although not needed

• it includes a High Availability API

Besides of the standard features and the ones listed above, Oracle RAC
delivers a complex enterprise solution which provides an advanced set of
tools for out-of-the-box transparent cluster implementation and replication.
None of the reviewed systems delivers such an advanced clustering solution.
It has though its price, and for a majority of enterprises the resulting costs
are a way far from their budget (Oraa).

Replication technical details

To build a cluster Oracle RAC depends on Oracle Clusterware which coor-
dinates multiple database server. Oracle Clusterware enables the database
nodes to communicate with each other. It forms the cluster and manages
the nodes as single logical server. Two key components are used to man-
age the cluster: Oracle Cluster Registry which records and maintains the
cluster and node membership information and a voting disk which acts as
a tiebreaker during communication failures. Consistent heartbeat informa-
tion from all the nodes is sent to the voting disk when the cluster is running
(Wik).

Oracle RAC addresses several areas of database management, such as:

• load balancing, connection pooling and query partitioning

• fault tolerance

• scalability

Two di�erent replication forms are supported by Oracle (Orab):

3.1 Commercial products 29 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• basic replication is implemented using CREATE SNAPSHOT or CRE-
ATE MATERIALIZED VIEW statements. It can replicate data only,
no indexes or stored procedures could be replicated. The created snap-
shots are read only.

• advanced replication supports various con�gurations. It is more di�-
cult to con�gure but allows to replicate not only data but also database
objects such as indexes and procedures.

Oracle does not support replication to non-Oracle databases. It also does
not support the replication of sequences, LONG and LONG RAW data
types. In the latter case, LOB data type could be used instead.

The replication itself is being implemented using Oracle Streams which is the
key technology for information sharing. It captures and distributes database
updates, events and application messages which are automatically applied
to destination nodes or passed to custom procedures and applications. The
Oracle Streams architecture is shown in the following Figure 1

Figure 1: Oracle Streams Architecture (Orab)

Oracle Streams consists of three main elements: capture, staging and con-
sumption. Figure 2 illustrates the replication �ow. Oracle Streams monitors
the changes made to a source database and replicates those to one or more
remote nodes. Using Oracle Stream terminology, it captures changes, stages
those changes and then consumes them at each database node (Oraa):

• Capture - the events are captured whether explicitly or implicitly,
i.e., applications are allowed to generate events and place them in the

3.1 Commercial products 30 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 2: Oracle Streams Replication (Orab)

staging area or events are being captured automatically using one of the
following techniques: log-based capture or synchronous capture. The
server captures DML and DDL events by examining the redo logs, log
bu�ers, and archive logs locally. Alternatively, the synchronous capture
observes DML changes by monitoring transaction activity, i.e., the
changes are captured as they happen. Independent of which capture
method is used, the changes are converted to a Logical Change Record,
i.e., a change to a single row. In case an SQL statement e�ects multiple
rows, multiple LCRs are generated and put into a persistent staging
area or queue (Orab).

• Staging - the database changes, already formatted as LCRs, are placed

3.1 Commercial products 31 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

in a staging area which is a persistent queue designed to store captured
events. The queue provides a holding area with security, auditing and
data tracking event features. Subscribers examine the contents of the
queue and decide whether or not to take an action on the event. In
the role of the subscriber could be an application, another queue or a
default apply process. A subscriber may de�ne and evaluate a set of
rules to determine whether the events in the queue meet its criteria and
if an action is to be triggered and the event in question to be consumed
(Orab).

• Consumption - to process the events from the staging queue, Or-
acle Streams uses the apply engine. The changes are read from the
queue and applied to a database or consumed by an application. The
engine processes DML, DDL, user-supplied LCRs and user-enqueued
messages. Apply engines support default and custom apply procedures.
The �rst one automatically applies DML, DDL and user-supplied LCRs.
The engine can also handle con�icts and invoke a resolution routine.
Customized apply lets the database administrator control the apply
process. Oracle Streams can register custom PL/SQL procedures and
invoke those during the application process. A user may de�ne multi-
ple handlers if needed which are then called to manage the replication
process (Orab).

Oracle Streams has the goal to simplify the data sharing between databases
and database clusters, it uni�es two approaches: message queuing and data
replication capabilities. Oracle Streams replication provides rich, �exible
and sophisticated con�guration choices to handle the real world situations.
The technology is designed to handle the data sharing in complex dis-
tributed database environments.

3.1 Commercial products 32 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Locking & transaction management

Oracle's locking & transaction management is a golden standard in the in-
dustry. The ANSI/ISO standard de�nes four isolation levels (Kyt05). These
levels are de�ned in terms of three phenomena that are either permitted or
not at a given isolation level (Tum04):

• dirty read � reads of uncommitted data are allowed. Information in-
tegrity and consistency is not guaranteed.

• non-repeatable read � at di�erent points in time, the content of a read
row may change.

• phantom read � executing a query at di�erent points in time, may
deliver di�erent results. The main di�erence to a non-repeatable read
is, that the data already read can not be changed.

The SQL standard does not impose a speci�c locking scheme or mandate
particular behaviors, but rather describes these isolation levels in terms of
these phenomena, allowing for many di�erent locking/concurrency mecha-
nisms to exist (see Table 1)11.

Isolation level Dirty Read Non-repeatable Read Phantom read

Read uncommitted Permitted Permitted Permitted

Read committed � Permitted Permitted

Repeatable read � � Permitted

Serializable � � �

Table 1: Oracle isolation levels (Oraa)

Oracle explicitly supports the READ COMMITTED and SERIALIZABLE
isolation levels as they are de�ned in the standard. However, the SQL
standard delivers various degrees of consistency at each isolation level: RE-
PEATABLE READ, according to SQL, guarantees a read-consistent result
from a query. READ COMMITTED on contrary does not return consistent

11http://www.oracle.com/technology/oramag/oracle/05-nov/o65asktom.html

3.1 Commercial products 33 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

results, and READ UNCOMMITTED is the level to use to get nonblocking
reads (Oraa).

Oracle Database has some particularities in this respect: READ COMMIT-
TED has all of the attributes required to achieve read-consistent queries,
while in some other databases, READ COMMITTED queries will return
answers that never existed in the database. Oracle Database does not need
to support dirty reads in order to provide non-blocking reads, as the other
databases do. Oracle database provides nonblocking reads by default.

Additionally Oracle Database provides a READ ONLY transaction level
which is equivalent to a REPEATABLE READ or SERIALIZABLE trans-
action and cannot perform any modi�cations in SQL. A transaction using a
READ ONLY isolation level sees only those changes that were committed at
the time the transaction began. Inserts, updates, and deletes are prohibited
in this mode (Oraa).

Within a transaction a Save-Point could mark the point of safe rollback. Or-
acle RAC supports a distributed transaction (requires two or more nodes)
and a two-phase commit which guarantees that all database servers partici-
pating in a distributed transaction either commit or rollback a transaction12.

3.1.2. DB2 Enterprise Server Edition

DB2 is an alternative product developed by IBM to compete with Oracle.
It is very similar to Oracle in the sense of provided features and documen-
tation. It provides all the tools necessary for cluster deployment. The list
of pre-requirements is a way much longer that the one of Oracle. IBM rec-
ommends using DB2 with AIX operating system using their own hardware
which brings a number of advantages. It is no surprise, that IBM tunes its
solutions for their own hardware platform, encouraging enterprises to buy
the hardware as well. The only point of disappointment at this stage is

12Oracle Database Administrator's Guide

3.1 Commercial products 34 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

the command line environment used in DB2. In comparison to other re-
viewed products, it is very outdated. Although IBM does provide a number
of GUI Tools for DB2 monitoring and controlling, it would be still a very
welcomed feature to have a powerful command line interpreter for remote
administration.

Features overview

DB2 enterprise server supports all the standard clustering features the same
way Oracle does. It delivers a rich number of tools for cluster controlling
and monitoring. Apart from it, the following key technologies are used in
the product (IBMb):

• High Availability Disaster Recovery

• Tivoli System Automation

• table partitioning

• multi-dimensional data clustering

• full intra-query parallelism

• a set of performance optimization tools

Both (Oracle RAC and DB2 Enterprise Edition) provide advanced cluster-
ing solutions and all the necessary tools. One point which speaks for IBM
in comparison to Oracle is the pricing model. Compared to Oracle RAC,
DB2 Enterprise Edition is a bargain13.

Replication technical details

DB2 uses the DB2 high availability instance con�guration utility (db2haicu)
to con�gure and manage database clusters. The utility has the following
tasks:

• add and remove databases to or from cluster domain

• identify primary and standby nodes

13http://www-01.ibm.com/software/data/db2/9/edition-enterprise.html

3.1 Commercial products 35 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• specify failover policies

The DB2 cluster manager, based on de�ned con�guration and speci�ed
rules, manages the database instances in the clustered environment. The
software is responsible for load balancing, connection pooling and failover
management. The data replication between database instances in the clus-
ter is managed by IBMWebSphere Replication Server which highly relies on
WebSphere Message Queue for subsequent message processing. The mes-
sage queue technology used by IBM for data replication is very similar to
the approach used by Oracle.

DB2 provides two di�erent solutions to the replication: SQL replication
and Q replication. In SQL replication, committed changes are stored in
relational tables before being sent to target systems. During Q replication,
the changes are saved in messages that are then transported via WebSphere
MQ queues to target systems (a similar technology is used by SkyTools
which uses PgQ for message transporting).

SQL replication is used for a wide number of reasons, e.g., backups, capacity
relief, and auditing change history. It is possible to set the replication
interval to continuous, intervals, or for one time only. Continuous replication
is used when applications need real-time data, i.e., clustering solution, such
as airline reservations, bank transfers, etc. DB2 can replicate not only
to another DB2 databank, but also to non-DB2 relational databases, such
as Informix, MS SQL Server, Oracle and Sybase. Additionally, DB2 is
very �exible to what kind of data is to be replicated - a user may de�ne a
subscription set(s), e.g., all rows and columns or just a subset of these. It is
also possible to de�ne rules determining how the data is replicated. These
rules clean, aggregate or manipulate the distributed data to any extent. A
user may also de�ne which nodes get the manipulated data and which not.
Figure 3 illustrates a simple SQL replication �ow (IBMb).

On the other hand, Q replication is used for copying large volumes of data at
low levels of latency. The changes are captured and converted to messages.

3.1 Commercial products 36 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 3: DB2 simple SQL replication (IBMb)

As soon as the data is committed and read by Q replication, it is sent to the
target servers through WebSphere MQ. At the target nodes, the messages
are read in the same order and converted back into transactional statements
which are then applied to the target tables. Using MQ a user may be sure,
that the data once read by Q, is going to be delivered and applied to the
target table in the right order. Replication sets and rules could be applied
here as well, in the same way it is used for SQL replication. Figure 4 shows
a simple con�guration in Q replication (IBMb).

DB2 provides one more replication method which is called event publishing -
the changes to source tables are captured and converted into XML messages
which are then put on WebSphere MQ message queues. The messages are
read by a message broker or other applications and could be published
anywhere a user sees �t. Such a method is a reasonable solution for feeding
the data to information brokers and Web application. The event publishing

3.1 Commercial products 37 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 4: DB2 simple Q replication (IBMb)

replication is illustrated in Figure 5 (IBMb).

Table 2 provides a brief comparison between SQL and Q replications im-
plemented in DB2 (IBMb):

Point of comparison SQL replication Q replication

Replication objects tables and views tables and stored proce-
dures

Pairing of sources and
targets

one or more replication sets Q subscription map

Grouping grouping source-target pairs
into subscription sets

Q subscriptions are
grouped by queue

Subsetting of columns
and rows

Yes Yes

Data transformation Stored procedures, SQL
statements

Stores procedures or pro-
gramm calls

Table 2: DB2 SQL and Q replication comparison (IBMb)

3.1 Commercial products 38 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 5: DB2 event publishing (IBMb)

Locking & transaction management

DB2 introduces a number of technologies in order to improve concurrency
and lock avoidance. It permits the deferral of row locks for Cursor Sta-
bility or Read Stability isolation scans in some situations, until a record
is known to satisfy the predicates of a query. The default behavior, when
row locking is done during a table scan, is to lock each row before de-
termining whether the row quali�es for the query. It is possible to de-
fer locking after the determination step. Using a DB2 internal variable -
DB2_EVALUNCOMMITED - predicate evaluation can occur on uncom-
mitted data. It is also possible to improve concurrency by setting the
registry variable DB2_SKIPDELETED and DB2_SKIPINSERTED which
permit scans to unconditionally skip uncommitted deletes and inserts, re-
spectively (IBMa).

DB2 provides di�erent isolation levels or locking strategies. Choosing an
appropriate isolation level ensures data integrity and also avoids unnecessary

3.1 Commercial products 39 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

locking. The isolation levels supported by DB2 are (GBC+02):

• Uncommitted Read: it can be used to access uncommitted data changes
of other applications, i.e., an application will return all of the matching
rows for the query, even if that data is in the process of being modi-
�ed and may not be committed to the database. Uncommitted read
transactions will hold very few locks. Thus they are not likely to wait
for other transactions to release locks.

• Cursor Stability: this is the default isolation level and locks any row
on which the cursor is positioned during a unit of work. The lock on
the row is held until the next row is fetched or the unit of work is
terminated. An application using CS cannot read uncommitted data.
The application locks the row which was fetched and allows no other
application to modify its content. As the application locks only the row
on which the cursor is positioned, di�erent results may be delivered to
two identical queries.

• Read Stability: all rows are locked that are part of a result set. If a
table contains 5000 rows and the query returns �ve rows, then only
�ve rows are locked. Using this isolation level an application cannot
access uncommitted data. Instead of locking a single row, it locks all
rows of the result set.

• Repeatable Read: this is the highest isolation level available in DB2.
It locks all rows referenced by an application, no matter how large the
result set is. An application using RRÂ§ cannot read uncommitted
data of a concurrent application.

DB2 isolates transactions from each other through the use of locks. This
way DB2 controls how other transactions interact with a resource. The
DB2 Database Manager uses locks to prohibit transactions from accessing
uncommitted data. Once a lock is acquired, it is held until the owning pro-
cess is �nished (using COMMIT or ROLLBACK). To avoid deadlocks the
DB2 uses a database manager which monitors locks and lock information.
To reduce locks DB2 recommends using the following strategy (IBMa):

3.1 Commercial products 40 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• issue the COMMIT command at the right frequency

• choose appropriate isolation level

• specify the FOR FETCH ONLY clause

• use type-2 indexes

• tune the LOCKLIST and MAXLOCKS con�guration parameters.

The introduction of the lock avoidance and CS or RS isolation scans helps to
improve concurrency dramatically. It is implemented by setting an appropri-
ate registry variable (DB2_EVALUNCOMMITED, DB2_SKIPDELETED
and DB2_SKIPINSERTED). It must be noted, that these registry variable
settings apply at compile time for dynamic SQL, and at bind time for static
SQL (IBMa).

3.2. Open Source Solutions

This section introduces the most popular Open Source database solutions
- MySQL and PostgreSQL. The o�erings from MySQL and PostgreSQL
have changed dramatically since their introduction in the 90ies. Started as
a simple database with a minimal features support, both products grew
up to enterprise-level solutions featuring almost all the key-technologies
implemented in DB2 and Oracle. It is because of the OS solutions, MySQL
and PostgreSQL in the �rst place, IBM and Oracle were forced to make
their software available for public download and even to introduce a free of
charge entry level versions of their databases which was hardly imaginable
in the past.

This chapter starts with a brief description of both products, investigates the
minimum system requirements and analyzes the locking and concurrency
support. It also draws a feature-based comparison between both databases.
The results of this comparison are summarized in a table at the end of
the PostgreSQL section. As the focus of this research paper lies in the

3.2 Open Source Solutions 41 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

area of database clustering, these approaches are thoroughly examined and
compared.

3.2.1. MySQL Cluster

MySQL is one of the most popular Open Source databases today. Although
the project started as pure Open Source, it grew up and o�ers commercial
support and products. Quite recently it was acquired by Sun Microsystems
and therefore a number of changes may occur in the recent future. Today
the community o�ers a number of products, from simple to enterprise ones.
MySQL provides a clustering solution as well and describes it as: �. . . the
industry's only true real-time database that combines the �exibility of a high
availability relational database with the low Total Cost of Ownership of open
source. It features a shared-nothing distributed architecture with no single
point of failure to assure 99.999% availability, allowing you to meet your
most demanding mission-critical application requirements..�14

The online documentation, support and the internet community make it
easy to learn, use and deploy MySQL based solutions. Using the OS product
brings a lot of advantages, but as the above description states, there are also
some drawbacks which are going to be discussed thoroughly below.

MySQL o�ers a clustering version of its software, distributed under GNU
GPL license as well as the commercial versions in the following editions:

• MySQL Cluster Standard Edition

• MySQL Cluster Carrier Grade Edition, additionally to SE version adds
some extras such as additional APIs, On-Line Add Node and LDAP
Directories support.

In this section we are going to discuss the free community version of MySQL
Cluster. As the only di�erence to the commercial contracts is not the key
clustering features used but the online support and a variety of options,

14http://www.mysql.com/products/database/cluster/

3.2 Open Source Solutions 42 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

e.g., customMySQL cluster builds, consultative support, problem resolution
support (via phone, email), custom development, geographical replication,
etc15.

Features overview

As the description of MySQL Cluster states, not all the clustering features
are supported. MySQL Cluster implements the key clustering features with
the following main di�erences:

• only shared-nothing architecture

• load balancing using NDB storage engine

• SQL standard compliance is mediocre

MySQL Cluster consists of three kinds of nodes:

1. a data node stores and instantaneously replicates all the data belonging
to the cluster. These nodes, also described as slave nodes, manage
database transactions.

2. a management server node handles system con�gurations. Often only
one node is needed, as it is essential only on system start-up and system
re-con�guration. The system remains online regardless of the status of
these nodes.

3. a server node enables SQL access to the clustered data nodes. The
MySQL server node functions as a MySQL master and handles all the
requests. Additional nodes are added to increase performance.

MySQL Cluster implements a typical master-slave architecture. The basic
con�guration is illustrated in Figure 6 and would typically look as follows:

• one server node,

• one management server node,

• four data nodes for extra performance, capacity and stability.

3.2 Open Source Solutions 43 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 6: Default MySQL Cluster con�guration (Sun)

Adding additional server nodes boosts the cluster performance. Such a
con�guration is also known as a multi-master con�guration. The typical
MySQL master/slave replication process is illustrated in Figure 7.

MySQL Server supports Statement Based Replication and Row Based Repli-
cation. Asynchronous replication method always uses RBR. The other repli-
cation methods are not supported by MySQL Cluster directly, but it could
be achieved using third party tools (Sun).

MySQL also comes bundled with a cluster monitoring software and has a
number of technologies implemented for performance �ne tuning.

Locking & transaction management

External locking and transaction management has the Oracle-like imple-
mentation. Each process needs to acquire access to a table before proceeding
accessing the table. When access is denied, the process is blocked and kept
15http://www.mysql.com/products/database/cluster/support.html

3.2 Open Source Solutions 44 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 7: MySQL Cluster replication (Sun)

on hold, waiting until the lock is released by the original process. As already
described in the DB2 section, the external locking a�ects server performance
dramatically, as the server must sometimes wait for other processes before
it can access the table. In MySQL it is possible to avoid table locking
completely by tweaking its internal variables - skip_external_locking, thus
enabling dirty reads. It is possible to avoid dirty reads as well, by tweaking
further MySQL internal parameters, such as �delay-key-write and READ
COMMITTED isolation level, enabling consistent non-locking reads and
thus behaving the same way Oracle does (Sun).

Transaction management was not supported by MySQL until quite recently.
Using InnoDB MySQL supports the transaction model. Locking is done on
the row level and executes queries as non-locking consistent reads by default,
in the style of Oracle. Typically several users are allowed to lock every row
in tables, or any random subset of the rows, without causing any con�ict or
memory exhaustion.

3.2 Open Source Solutions 45 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

3.2.2. PostgreSQL

PostgreSQL is another OS, powerful and rock-solid database system. It has
more than 15 years of active development and earned a strong reputation
for reliability, data integrity, and correctness. It runs on all major operating
systems. It is fully ACID compliant, as well as all other databases reviewed
previously, has full support for foreign keys, joins, views, triggers, and stored
procedures. It includes most SQL92 and SQL99 data types and it consider-
ably better supports SQL standard than MySQL. PostgreSQL prides itself
in standards compliance. Its SQL implementation strongly conforms to
the ANSI-SQL 92/99 standards. The extra point worth mentioning is that
PostgreSQL has an exceptional documentation16.

Features overview

Considering the fact that PostgreSQL does not support clustering out-of-
the-box, we shall concentrate on reviewing only its main cluster relevant
features which have indirect in�uence on clustering performance.

PostgreSQL shines when it comes to standards compliance, as its imple-
mentation strongly conforms to the ANSI-SQL 92/99 standards. It has full
support for subqueries (including subselects in the FROM clause), read-
committed and serializable transaction isolation levels.

The following non-standard features are implemented and fully supported
by PostgreSQL17:

• Generalized Search Tree indexing is an advanced system which brings
together a wide array of di�erent sorting and searching algorithms
including B-tree, B+-tree, R-tree, partial sum trees, ranked B+-trees
and many others. It also provides an interface which allows both the
creation of custom data types as well as the use of extensible query
methods to search them. GiST is also a base framework for many
public projects such as OpenFTS and PostGIS. OpenFTS which stands

16http://www.postgresql.org/about/
17http://www.postgresql.org/about/

3.2 Open Source Solutions 46 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

for �Open Source full text search engine� is an online engine for data
indexing and relevance ranking to support full text search on a database
level. PostGIS adds support for geographic objects in PostgreSQL,
allowing it to be used as a spatial database for geographic information
systems.

• table inheritance puts an object oriented slant on table creation. It
allows to derive new table from other ones, the same way inheritance
is implemented in object oriented languages, like Java. Even better,
PostgreSQL supports both single and multiple inheritance in this man-
ner.

• the rules system, allows the database designer to create rules which
identify speci�c operations for a given table or view, and dynamically
transform them into alternate operations when they are processed.

• the events system is an interprocess communication system in which
messages and events can be transmitted between clients using the LIS-
TEN and NOTIFY commands. Noti�cations can be issued from trig-
gers and stored procedures, thus allowing clients to monitor database
events such as table updates, inserts, or deletes as they happen.

Describing all the supported features would need a separate white-paper
document and therefore is not covered here. The only thing to note is the
fact, that based on technologies implemented and supported, PostreSQL is
far more advanced than MySQL. The major legal di�erence between MySQL
and PostgreSQL is its license agreement. As stated above MySQL relies on
the GPL license18, PostgreSQL is distributed using BSD license19. It makes
a huge di�erence, when it comes to customization and deployment of the
commercial products based on this database solutions.

Table 3 provides a brief feature-based comparison between MySQL and
PostgreSQL (Ler07):

18http://www.mysql.com/products/database/cluster/features.html
19http://www.postgresql.org/about/

3.2 Open Source Solutions 47 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

MySQL PostgreSQL

License GPL and Commercial BSD

Speed High Medium

Stability Very High High

SQL standard compliance Medium High

ACID compliant yes yes

Authentication method SHA1 PAM, LDAP, SSPI, GSS-
API, trust, password and
Kerberos

SSL support yes yes

Locking & Concurrency high (Oracle-style) high

Transactions yes yes

Replication yes yes, relies on 3rd party
tools

Load balancing yes NO

IPv6 support yes yes

Clustering yes NO

Table 3: Brief key-feature based comparison between MySQL and PostgreSQL

Note: When it comes to stability, MySQL is considered to be more stable
than PostgreSQL, due to its much larger user base. MySQL source code
is better tested and the database is more often used in production environ-
ment20.

Locking & transaction management

PostgreSQL provides a rich set of tools to manage concurrent access to data.
Internally, it uses MVCC, i.e., while querying a database each transaction
sees a snapshot of data, regardless of the current state of the underlying
data. Thus protecting the transaction from viewing inconsistent data that
could be caused by concurrent transaction updates on the same data sets,
providing transaction isolation for each database session. MVCC minimizes
lock contention in order to allow for reasonable performance in multiuser
environments (Posc).

20http://www.geocities.com/mailsoftware42/db/

3.2 Open Source Solutions 48 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

The main advantage of using of MVCC rather than locking is that locks
acquired for querying (reading) data do not con�ict with locks acquired for
writing data, and so reading never blocks writing and writing never blocks
reading.

Table- and row-level locking are also available in PostgreSQL, however,
proper use of MVCC will provide better performance than locks. In addi-
tion, application-de�ned advisory locks provide a mechanism for acquiring
locks that are not tied to a single transaction (Posc).

PostgreSQL provides four transaction isolation levels as described in Ta-
ble 421:

Isolation level Dirty Read Non-repeatable Read Phantom read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

Table 4: PostgreSQL isolation levels

When compared to the Oracle implementation, it is obvious that the isola-
tion levels support in Oracle and PostgreSQL are identical.

The reason for using PostgreSQL instead of MySQL is not only its relia-
bility, but also its support of stored procedures and built-in PglSQL sup-
port. It also o�ers b-tree, hash, r-tree, and its own custom GiST index
type which allows for user de�ned types, and function based index to be
created (Ler07). PostgreSQL is rock-solid reliable and has a focus on ACID-
correctness: when it returns from a commit, the data is safely on disk and
will not be lost.

21http://www.postgresql.org/docs/8.3/static/transaction-iso.html

3.2 Open Source Solutions 49 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

3.3. Summary

The goal of this chapter was to analyze the four most commonly used
databases - two commercial solutions represented by Oracle RAC and DB2
Enterprise Edition and two OS alternatives - MySQL and PostgreSQL, bear-
ing in mind their features, clustering approaches and generally to provide a
clear picture of the possible database usage. Comparing all four approaches,
it is obvious, that Oracle is the industry's golden standard, supporting a
wide range of key-technologies and even going far beyond it. Deploying such
a solution would guarantee standard compliance, provide a developer with
rich set of tools and support, but it comes with a heavy price tag.

MySQL follows Oracle-style philosophy, and with the latest version (>=5.0)
strives to be as standard compliant as possible. High stability, speed and
outstanding support makes MySQL an excellent choice at no or minimal
cost. Providing enterprise features and key-technologies out-of-the-box gives
MySQL a big advantage and makes it a worthy alternative.

PostgreSQL is a rock-solid standards compliant product with a rich set
of database tools. The lacks of clustering support in the default package
per se is somewhat confusing. The cluster implementation is provided by
third party frameworks, but it would be nice to see PostgreSQL own cluster
implementation in the future. The PostgreSQL Clustering Frameworks and
their inter-comparison is thoroughly described in the next chapter of this
paper.

3.3 Summary 50 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Part II.
Application

51 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

4. Database clustering in PostgreSQL

This chapter introduces third party clustering frameworks for PostgreSQL.
The database does not deliver clustering feature by default and therefore
relies on the projects described here. There are a number of frameworks
which compensate for the missing built-in technology.

A research of products which provide replication support based on Post-
greSQL, revealed two di�erent categories of products: commercial and OS
ones. Both categories have di�erent target audiences. Bellow we give a list
of available commercial and OS frameworks and their brief description:

1. commercial products � customized clustering solutions for PostgreSQL.
Commercial providers concentrate on installation, con�guration, sup-
port and maintenance of clustering solutions based on PostgreSQL
using existing OS frameworks:

• Mammoth Replicator is 100% pure PostgreSQL with integrated
replication, written in C and designed with reliability in mind.

• Cybercluster provides a synchronous multi-master replication so-
lution for PostgreSQL.

• Continuent Tungsten Enterprise is an enterprise ready solution
for Data Availability and Database Performance Scalability which
aims to resolve some of the key points and problems of Oracle,
MySQL and PostgreSQL;

2. OS solutions � each reviewed solution is an independent stand-alone
project which implements a certain clustering approach:

• Log Shipping is a core PostgreSQL function which makes a simple
replication possible.

• Postgres-R is a PostgreSQL extension providing consistent database
replication.

Database clustering in PostgreSQL 52 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• PGCluster is the synchronous replication system of the multi-
master composition for PostgreSQL.

• PGPpool-II is described as middleware that works between Post-
greSQL servers and database clients.

• Slony-I is a master-slave replication system, that includes all fea-
tures and capabilities needed to replicate large databases.

• Londiste is a Python based replication engine based on the PgQ
transport mechanism which is a part of SkyTools.

• Bucardo is a Perl based master-master and master-slave replication
system for PostgreSQL.

In the �rst part of the chapter, I give a general overview of commercial
products and then introduce each project separately. The analysis schema
for the commercial products di�ers from the one for the OS solutions. The
commercial o�erings target primarily users, who would prefer to have their
DBMS solutions outsourced, and the main focus lies in the o�ered services,
rather than in used technologies. For the commercial products we give a
product overview, describe o�ered services and stress the di�erences to other
commercial o�erings. The OS products, on the other hand, are reviewed
from the point of view of a professional user, e.g., a system administra-
tor, who wants to implement a PostgreSQL based clustering solution. The
following schema is used for the framework analysis:

• a framework overview � it introduces the framework in question, lists
system requirements and underlines key-features.

• clustering approaches � it describes the clustering approaches which
the framework uses, compares them to the available ones, described in
the previous chapter.

• advantages and drawbacks � it underlines advantages and disadvantage
of the used clustering implementations.

Database clustering in PostgreSQL 53 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

The goal of the chapter is to outline the supported clustering features, to
compare the available solutions and to choose suitable clustering frameworks
for evaluation. The result of this research is a feature-based comparison ma-
trix of chosen clustering solutions. Based on the research, we also try to
answer the question which framework(s) or which constellation of frame-
works could be used in a production environment.

4.1. Commercial Products

There are a few commercial clustering solutions available for PostgreSQL.
Although the products are considered to be commercial, they are distributed
under BSD (Mammoth Replicator and Cybercluster) or GNU (Continuent
Tungsten Enterprise) license and are generally OSS.

The main focus are not the clustering products per se, but rather o�ered
services, maintenance, on-demand support and personnel training. The
companies o�ering such solutions do not concentrate on providing and de-
scribing technical details of their products, as the underlying OS solutions
are very well documented, but rather concentrate on providing a wide spec-
trum of services and on implementing a clustering solution based on speci�c
client needs. The main audience for the commercial providers are clients
who use DBMS for their particular needs and prefer to have their database
clustering solution to be taken care of by professionals, i.e., outsourced.
Therefore the analysis schema di�ers from the one for OSS. The commer-
cial products are reviewed using the following criteria:

• o�ered services.

• database migration.

• online support and community.

• used clustering approach and OS framework(s).

4.1 Commercial Products 54 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

4.1.1. Mammoth Replicator

Command Prompt, Inc. describes itself as: �the oldest and largest dedicated
PostgreSQL support provider in North America. Since 1997, we have been
developing, supporting, deploying and advocating the use of the World's
Most Advanced Open Source Database�. The company consists of 12 expe-
rienced professionals, who develop and support their product. Technologies
such as savepoints, shared row locking auto-vacuum integration were intro-
duced by the company's engineers.22

The company provides the PostgreSQL Replication engine which is devel-
oped exclusively for PostgreSQL with reliability in mind. The product
supports the following features (Com):

• it supports master-slave replication.

• it uses a transaction log, asynchronous replication model and is de-
signed to be WAN tolerant.

• replicator supports a number of advanced features, such as large object,
role and ACL replication.

• it also supports promotion and failover.

• it implements per table replication.

• it uses SSL and compressed connectivity for greater e�ciency, com-
bined with heartbeat and other failover software.

The company provides PostgreSQL professional services which include con-
sulting, case studies, around the clock support (web, phone, remote hand,
reactive and proactive), training, project management and infrastructure
services. The company actively contributes to the PostgreSQL community,
o�ers custom feature implementations for PostgreSQL, custom development

22http://www.commandprompt.com/about/

4.1 Commercial Products 55 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

for PostgreSQL and surrounding applications. It can provide proactive sup-
port for demanding environments, such as monitoring and performance mea-
surements. Command Prompt, Inc. also provides commercial support for
Slony-I. A number of training courses are o�ered by the company's profes-
sionals as well.

4.1.2. Cybercluster

Cybertec is an Austrian PostgreSQL Database Company which, as it states,
o�ers a comprehensive set of services for PostgreSQL, distributing the clus-
tering solutions for all platforms including Linux, Solaris and Windows. It
o�ers not only commercial support for PostgreSQL, but also provides Post-
greSQL training courses and consulting services. Database migration and
PostgreSQL core development also belong to the core activities. The com-
pany delivers clustering solutions (high-availability, failover and replication)
based on the database as well.23

The clustering PostgreSQL product from Cybertec is called Cybercluster
and is distributed under BSD license. The solution uses synchronous multi-
master replication and provides the following advantages (Cyb):

• it is bundled with a replication manager, a load balancer and a con-
nection pooling software.

• it does not use a modi�ed version of PostgreSQL, i.e., a user could
use the latest version of PostgreSQL and apply the updates/patches
directly.

• it supports the replication over large distances and bad network con-
nections (the product uses Skytools, a software package written by
Skype which is design to cope with large server farms. The SkyTools
are reviewed later in this paper).

• disaster recovery tools are part of the package.

23http://www.postgresql.at/english/produkte_postgresql_e.html

4.1 Commercial Products 56 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• improved statement based replication (sequences, now(), random(),
etc).

Cybertec relies on the OS frameworks to deliver all the core features and
implements a number of extended functions, such as: correct handling of
non-deterministic functions (nextval / setval, now(), randon(), etc.), no
triggers or primary keys are required for replication and additionally it
supports DDL events replication.

Reviewing the product we found the following minor gripes:

• the installation packages available for download support only Linux
and Windows platforms. Packages for OSX and Solaris have to be
compiled from the source code. The windows package is based on the
old PostgreSQL revision.

• migration tools are not provided. More than that, the previous Post-
greSQL installation has to be removed completely prior to the instal-
lation.

These small disadvantages exist only if one wants to test the product him-
self. Retaining company's services would provide a client with professional
technical support (24x7) and training, consulting and performance tuning.
The company's services also include cluster design, setup and implementa-
tion, including implementation of applications on top of Cybercluster.

4.1.3. Continuent Tungsten Enterprise

Continuent is a fully supported, enterprise ready solution for Data Availabil-
ity and Database Performance Scalability. It provides clustering solutions
for PostgreSQL, MySQL and Oracle. The key features of the products
are:24

• master/slave and multi/master setups.

24http://www.continuent.com/solutions/overview/tungsten-for-postgresql

4.1 Commercial Products 57 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• automated back-up.

• disaster recovering over WAN.

• replication from Oracle into PostgreSQL.

• failover solution.

• autonomic cluster management

• bi-directional replication

In comparison to the other reviewed commercial solutions, Continuent does
not concentrate only on PostgreSQL, but supports Oracle and MySQL as
well. It o�ers a wide range of data availability and performance solutions.
On the other hand, Continuent does not o�er such a degree of support as the
previous companies. Depending on a acquired license, Contiuent o�er tech-
nical support for its products, such as: professional documentation, quick
installation builds, 8x5 email support, 24x7 enterprise support, custom bug
�xes and guaranteed response time.

Table 5 sums up the features o�ered by the reviewed commercial solutions
and visually compares them to each other.

4.1 Commercial Products 58 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Mammoth Replicator Cybercluster Continuent

Technical criteria

License BSD BSD GNU

Supported platforms Unix-type all platforms all platforms

Sync. method Async Sync Async

Connection pooling no yes no

Query partitioning no yes yes

Load balancing no yes yes

Monitoring & Admin-
istration tools

yes yes yes

Latest PostgreSQL
support

yes no yes

Modi�ed PostgreSQL
build

yes no no

Commercial criteria

Training yes yes no

Consulting yes yes yes

Custom implementa-
tions

yes yes no

Database migration no yes no

Table 5: Commercial PostgreSQL based products

4.2. Open Source Solutions

One of the main reasons for going with a commercial provider for Post-
greSQL clustering services is to gain commercial support in the �rst place.
This section introduces the available OS frameworks and describes the ad-
vances made in the PostgreSQL clustering. It reviews the frameworks using
the same analysis schema. At the end of this chapter a comparison matrix
is provided with a summary of the reviewed OS clustering solutions.

Before we start with reviewing the OS products, we have to de�ne the crite-
ria which make a good enterprise clustering product from the technical point

4.2 Open Source Solutions 59 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

of view, i.e., if a database administrator were to implement a PostgreSQL
based clustering solution:

• online documentation (Guides, HOWTOs, FAQs).

• online support and active community.

• simple installation procedure, the modi�cation of the PostgreSQL database
is not desirable.

• the distribution should support the latest version of PostgreSQL.

• connection pooling, load balancing, query partitioning and caching fea-
tures is a plus.

• monitoring and administration software.

4.2.1. Log shipping

Write Ahead Log (WAL) is an implementation provided by PostgreSQL
itself, the changes of each transaction are written to the DB after these
changes have been logged in a write ahead log �le. The changes from WAL
are then read and applied to other databases. Such an approach results in
a reduced number of disk writes, as only the log �le needs to be �ushed to
disk to guarantee that a transaction is committed. WAL makes it possible
to support on-line backups and point-in-time recovery.25

Such an approach may have some drawbacks which depend on the applica-
tion:

• slave nodes cannot serve requests during replication.

• slave nodes cannot be replicated while online.

• PostgreSQL natively accepts only completed WAL �les.

25http://www.postgresql.org/docs/8.3/interactive/wal.html

4.2 Open Source Solutions 60 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

WAL Replication is very similar to the mechanism PostgreSQL uses when
recovering from an unclean shutdown. The PostgreSQL daemon could not
determine the database state, it opens WAL and replays all the transactions
since the last checkpoint.

PostgreSQL has a con�gurable parameter command which is called every
time after a segment switch, thus making it easy to deliver complete WAL
segments from a master server to slaves, e.g., using scp, rsync, etc. When
replaying WAL segments, the PostgreSQL database must be brought o�ine.
When recovery is over, the database in question is taken back online.

The Log Shipping works as advertised, it is a part of PostgreSQL and is
very well documented. It is a good solution if one wants to have an up-
to-date backup copy of a database. But such an approach lastly can not
be used for heavily loaded clusters, as the slaves would then be o�ine the
majority of the time and secondly it provides neither a load balancer nor a
connection pooler. Besides, bringing a slave database server o�ine during
the replication is not exactly the best alternative. From the performance
and high availability point of view, relying on such an approach for database
replication is at least questionable.

4.2.2. Postgres-R

Postgres-R is an extension to the PostgreSQL, providing e�cient, fast and
consistent database replication for clusters. It is designed to be as trans-
parent as possible to the client, stable and secure by default. The primary
use of Postgres-R is to build a load-balancing and high-availability database
systems. Due to the �exible architecture of Postgres-R, it is easily possi-
ble to extend or adjust the replication process to many di�erent means.
Compared to common single node database systems, a Postgres-R cluster
is more reliable and scales better while being cheaper and more �exible.26

26http://www.postgres-r.org/about/

4.2 Open Source Solutions 61 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Postgres-R is an e�ort to integrate a replication solution into PostgreSQL.
It is not a part of PostgreSQL, as it is not a mature and well tested solution,
i.e., it did not reach production quality as of yet (Posa).

Porsgres-R relies on the shared-nothing synchronous cluster architecture, it
provides eager replication, supports multi-master con�guration on the basis
of binary change-set replication. The framework consists of a replication
manager which has a cluster coordination function. The transaction man-
agement is handled by each node separately. In the case of a con�ict, all
the nodes participating in the replication cluster execute a roll-back. In the
other case a successful commit is issued - a so called two-phase commit and
the data becomes a part of the change-set (Posa).

Postgres-R is a separate project, thus a user may have the latest PostgreSQL
database installed on his system.

There are a couple of disadvantages when using Postgres-R:

• an experimental code base, the project is still in development and not
ready for production environment as of yet.

• the documentation is still lacking, no Guides, HOWTOs or FAQs are
available online.

The project meets all the other criteria de�ned for a good PostgreSQL
clustering solution. Though, it is under heavy development, it promises to
be a very reasonable alternative. And if it is merged with the PostgreSQL
code base, it is going to provide a clustering feature to PostgreSQL out-of-
the-box.

4.2.3. PGCluster

PGCluster is the synchronous replication system of the multi-master com-
position for PostgreSQL. PGCluster uses a modi�ed version of PostgreSQL
and consists of (PGC):

• a load balancer.

4.2 Open Source Solutions 62 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• a cluster DB.

• a replication server.

There is no other information available online. The project looks dead,
there was no update since March 2008. The home page27 produces a list
of Python errors all the time. The previous release took place in 2005, the
project activity is very low. So PGCluster fails to provide an acceptable
clustering framework for PostgreSQL as well.

4.2.4. Londiste

Londiste is a part of SkyTools developed by Skype. The project is a repli-
cation engine written in Python. It uses PgQ as a transport mechanism.
Its main goals are robustness and easy usage. Thus it is not as complete
and feature-full as Slony-I.28

Londiste is an asynchronous master-slave replication system. Asynchronous
means that a transaction committed on the master is not guaranteed to have
made it to any slave at the master's commit time. Data changes on slaves
are not reported back to the master, it is the other way around only.29

Londiste is a part of the SkyTools package and can be easily installed using
a package manager on any Linux distribution. Although it is not as �exible
or feature-full as PGPool, it is a very light-weight solution which can provide
some sound and acceptable clustering solution. The only point of concern
here is, that it still uses asynchronous synchronization which is not always
acceptable, e.g., when data consistency is an issue.

4.2.5. Bucardo

Bucardo is an asynchronous master-master and master-slave replication sys-
tem for PostgreSQL written in Perl. It uses triggers on individual tables.
27http://www.pgcluster.org/pgcluster
28https://developer.skype.com/SkypeGarage/DbProjects/SkyTools
29http://skytools.projects.postgresql.org/doc/londiste.cmdline.html

4.2 Open Source Solutions 63 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

It supports con�ict resolution and exception handling through the use of
custom Perl subroutines.30

Bucardo does not require PostgreSQL modi�cations. As the framework is
written in Perl, it requires that Perl and a number of modules are installed
on the system. The software has only been tested on Linux and BSD plat-
forms and will not run on Windows without modi�cations to the source
code.

The supported features of the framework are (Buc):

• it uses fast, asynchronous trigger-based replication, both master to
slave, and master to master.

• it supports standard and custom con�ict handling methods.

• it provides custom exception handling methods and other hooks for
�ne control of the replication process.

• it implements graceful handling of network disconnections and other
problems.

• it is easy to con�gure and setup.

• it supports rewrite of target tables with custom SELECT clauses.

• step by step data changes are not tracked, so updates can happen
quicker.

• it includes logging and analysis tools.

The authors of the project also list a number of the known limitations:

• it replicates tables only, not the entire database.

• it does not replicate DDL.

• it cannot handle more than two master nodes at a time.

• it also requires a primary key on each table to be replicated.

30http://bucardo.org/bucardo.html

4.2 Open Source Solutions 64 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• data changes are not tracked, thus expensive locking could not be
avoided.

Besides of the known limitations mentioned above, it lacks an online com-
munity, runs only on couple of platforms (in some cases even the source
code modi�cation are needed), requires an outdated Perl installation and
its libraries, no built-in load balancer or connection pooler and the list of
the required but not implemented features goes further. If an asynchronous
replication is acceptable, a better solution would be to go for Londiste,
rather than using Bucardo.

4.2.6. PGPpol-II

Pgpool-II is a very interesting project. It is a middleware that works be-
tween PostgreSQL servers and PostgreSQL database clients. The framework
runs on most UNIX-like platforms, including Linux, Solaris and BSD. The
features of PGPool-II are:31

• connection pooling is used to reduce connection overhead and to im-
prove system performance by reusing open connections.

• replication is meant to create realtime backups on physical disks in
order to provide non-stop servicing.

• load balancing reduces the load on each PostgreSQL server by dis-
tributing SELECT queries among multiple servers.

• it uses parallel querying, the requests are divided and executed on all
servers concurrently which reduces overall query execution time.

• it supports limiting of exceeding connections which limits the number
of concurrent connections. The extra connections are not dropped but
rather queued instead.

PGPool has some known limitation, such as (Posb):

31http://pgpool.projects.postgresql.org/pgpool-II/doc/pgpool-en.html

4.2 Open Source Solutions 65 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• limited authentication methods support: in the master-slave or replica-
tion mode it supports trust, clear text and PAM authentication meth-
ods. In the other modes supported authentication methods are besides
the ones mention in the 1st points are crypt and MD5.

• PGPool does not support access control in pg_hba.conf format. If
TCP/IP connections are enabled, all the connections from any hosts
are supported. Additional access control could be initiated using the
iptables package.

PGPool is distributed under the BSD license, uses synchronous replication
and meets the majority of the criteria de�ned: the installation is straight-
forward, the online documentation is complete. The solution is reasonable
and sound. The known limitations could be avoided or tweaked using some
other Linux tools. In this respect, the project looks very promising. The
thorough testing and benchmarking of the framework is carried out in the
next chapter of this research paper.

4.2.7. Slony-I

Slony-I is another interesting clustering alternative for PostreSQL. Slony-
I is a master-slave asynchronous replication system supporting cascading
and failover. It includes all features and capabilities needed to replicate
large databases to a reasonably limited number of slave systems. Originally
the system was designed for use at data centers and backup sites, where
the normal mode of operation is that all nodes are available. Slony-I is
powerful, trigger based, and highly con�gurable.32

Slony-I is not tight to a particular version of PostgreSQL, i.e., the system
could be stopped and started at any time. The framework has though a
number of serious limitations (Slo):

• it has no built-in connection pooling, load balancing or query parti-
tioning.

32http://www.slony.info/documentation/slonylistenercosts.html

4.2 Open Source Solutions 66 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• it is unreliable on unstable network connections.

• it cannot detect a node failure, thus no automatic master node reelec-
tion possible.

• a multi-master architecture is not supported.

Slave nodes are used for safety or for parallelizing queries which improves
performance. Slony-I su�ers from O(N 2) communication overhead, where
N stands for the cluster size. There is no failover system delivered with
Slony. The project sees it not as a part of clustering solution but relies on
a database/system administrator instead.

Connection pooling and load balancing could be implemented using some
third party software, e.g., using the SkyTools project. It is hardly possible to
use Slony as replication framework with remote database nodes. Although
regarding communications, the replication cascading is one possibility to
reduce load on the master in a large replication cluster.

Slony does not try to implement all possible replication models, it rather
concentrates on implementing one - asynchronous replication, using trig-
gers to collect table updates. It provides an extensive documentation, with
Guides, FAQs and Best Practices sections. It comes bundled with monitor-
ing and administration tools.

4.3. SkyTools

Accept for PGPool, the clustering solutions presented in this paper lack a
connection pooler, load balancer and query partitioner. Which is a huge
disadvantage when a complex clustering approach is required. Fortunately,
Skype uses internally PostgreSQL databases as well and therefore it has
developed a handy set of database tools � SkyTools. The database access
is implemented through stored procedures which has a number of positive
e�ects (Skyb):

• table organization and optimization is transparent for applications.

4.3 SkyTools 67 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• easier security management is provided. In most cases it is needed to
control user's behavior rather than the tables.

• all transaction can be made in auto-commit mode, thus taking mini-
mal amount of roundtrips for each query and uses less CPU for each
transaction.

The SkyTools introduce a set of instruments which are described bellow in
full details. In the next chapter we make use of these tools, in order to
implement a clustering solution with PostgreSQL using Slony-I:

• pgBouncer is a lightweight and robust connection pooler for Post-
greSQL. It reduces the number of open connections to a database,
thousands of incoming connections are reduces to only tens, thus sav-
ing system resources. Figure 8 schematically illustrates this process.

Figure 8: PostgreSQL Connection Pooler (Oja08)

pgBouncer supports a number of pooling modes:

� session pooling - assigns a connection from the pool to a client and
puts back the connection to the pool after the client's disconnect.

� transaction pooling - connections are assigned only during trans-
actions.

4.3 SkyTools 68 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

� statement pooling - the same as transaction pooling, but it gets
a connection only for one statement, multi-statement transactions
are prohibited.

• plProxy is a compact language of remote calls between PostgreSQL
databases. Using plProxy a user can create proxy functions to be
executed on a remote database server (see Figure 9).

Figure 9: Remote Call using plProxy (Oja08)

The body of the function describes connection parameters. Using re-
mote calls is not a very good idea for data modi�cation as there is no
guarantee that the transaction is committed (a two phase commit is
not supported), but it could be used e�ciently to serve read requests.

Figure 10: Geographical partitioning with plProxy (Oja08)

plProxy is used as an additional layer between a database and an appli-
cation. It is in some respect a load-balancer and a security layer, e.g.,
it can be used for geographical (see Figure 10) or application driven

4.3 SkyTools 69 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

(see Figure 11) partitioning, to split database based on country code
and/or based on a given application context.

Figure 11: Application based partitioning with plProxy (Oja08)

Horizontal partitioning for load balancing is another area of plProxy
usage. As proxy databases are stateless, using plProxy in a cluster for
high availability and load balancing is a good idea (see Figure 12)

Figure 12: Load Balancing with plProxy (Oja08)

4.4. Summary

In this chapter the available clustering solutions for PostgreSQL were re-
viewed, commercial and OS ones. The commercial solutions focus on pro-
viding a wide range of services (cluster design and setup, consulting, main-
tenance, on-demand support and training course) bearing in mind speci�c
client's needs. There is a number of alternative OS projects available which

4.4 Summary 70 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

target professional users. Postgres-R looks very promising, but is still in
development and not ready for productive use at this very time.33 We have
chosen three solutions which seem reasonable for implementing clustering
with PostgreSQL - Slony-I, PGPool and Londiste. The following table sum-
marizes and provides the brief overview of the key-technologies and features
used in these frameworks.

Londiste PGPool-II Slony-I

License BSD BSD BSD

Maturity stable stable stable

Replication method multi-slave,
shared-nothing

master-slave, shared-
nothing

single master
only to slave,
shared-nothing

Sync. method Async Sync Async

Connection pooling no yes no

Query partitioning no yes no

Load balancing no yes no

Online docs & com-
munity support

yes yes yes

Monitoring & Admin-
istration tools

yes yes yes

Latest PostgreSQL
support

yes yes yes

MySQL Cluster is being advertised a lot and often compared to PostgreSQL.
The main concern here though is that it writes asynchronously which on the
one hand results in a considerable performance boost and better scalability,
but on the other hand does not guarantee that the data is on-disk safe and
consistent. Bearing in mind that the MySQL Cluster uses asynchronous
writes, splitting read/writes operations between the master and the slaves
causes inconsistency when, e.g., the data is written and read immediately.
There is no way to use synchronous replication with MySQL Cluster itself,
but to go with other OS solutions.

33http://www.postgres-r.org/documentation/installation

4.4 Summary 71 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

5. Evaluation

In the previous chapters of the paper we provided some theoretical back-
ground on clustering, reviewed the most popular databases, looked at the
advantages and drawbacks of the implemented clustering approaches and
�nally introduced the available clustering solutions for PostgreSQL. The
database relies on external frameworks for implementing replication. Al-
though it has a core function which may be used for replication, e.g., write-
ahead logging, we came to the conclusion, that it has some limitations.
Carefully analyzing the frameworks in question based on the selected cri-
teria, we concluded, that three projects are most suitable for building a
clustering solution using PostgreSQL: PGPool-II, Slony-I and Londiste.

Slony-I has a couple of drawbacks, in order to compensate for the lack of
functionality we are going to use an additional package - SkyTools. PG-
Bouncer and plProxy are used for connection pooling and load balancing
respectively. PGPool-II on the other hand comes bundled with its own set
of tools and does not require any additional installations.

In this chapter we are going to design a simple cluster, set-up and con�gure
the cluster using these projects and �nally run a couple of tests. We are
going to evaluate each solution separately, taking into account the goal each
project is set to achieve.

5.1. Test cases design

In order to test the selected projects, we are going to design a common
cluster con�guration, specifying all the requirements to be met by each
framework. Figure 13 schematically demonstrates the cluster setup.

Evaluation 72 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 13: Cluster Con�guration

5.1.1. Cluster architecture

For clients, the cluster is just one database instance, transparently repre-
sented by a logical database, which consists of:

• a connection pooler which reuses opened connections to the cluster,
thus limiting the used resources.

• a load balancer which adjusts the load between database servers. Read
only queries are sent to the slaves and modi�cation queries are sent only
to the master node.

• a master server which processes the modi�cation queries.

• two slave servers which receive replicated data from the master server
and process read only queries.

5.1 Test cases design 73 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

The idea here is the following: the connection pooler controls all the incom-
ing connections. The number of opened connections in the pool is limited
to ten clients. If all the opened connections are used, a new incoming client
connection is put in a waiting queue. As soon as one connection in the
pool gets released, it automatically gets assigned to the �rst client in the
queue. The load balancer processes the incoming queries and sends all the
modi�cation queries to the master server, while the read only queries are
balanced among the slaves. Each slave has an equal priority.

Master and slave nodes are installed on a separate Linux machine, which are
connected via network. The connection and all the command executions are
carried out against the logical database and not against separate database
nodes. Thus for a client (independent if it is a command line interpreter or
a JDBC client) it seems that a connection is opened to a single PostgreSQL
database.

5.1.2. Database schema

Figure 14 graphically illustrates the database schema (the optional at-
tributes are omitted) used for the evaluation.

Client Item

Purchase

buys

id

description

id

note

lastName

firstName

purchaseNo

n m

quantitycreated

k

Figure 14: Database schema

5.1 Test cases design 74 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

We de�ne two entities � a client and an item. Both entities stand in a n to
m relationship which results in a separate client_item relation. Each entity
(Client and Item) has an id as its primary key which is an auto generated
and auto incremented value. In MySQL there is a possibility to de�ne an
auto incremented column, PostgreSQL uses sequences for this purpose. The
SQL schema representation of the test database is given bellow:

� �
CREATE TABLE Client(

id SERIAL PRIMARY KEY,
�rstName VARCHAR(50) NOT NULL,
lastName VARCHAR(50) NOT NULL,
note VARCHAR(255) NOT NUL,
created TIMESTAMP,
lastModi�ed TIMESTAMP DEFAULT now()

) ;

CREATE TABLE Item(
id SERIAL PRIMARY KEY,
description VARCHAR(255) NOT NULL,
created TIMESTAMP,
lastModi�ed TIMESTAMP DEFAULT now()

) ;

CREATE TABLE client_item(
purchaseNo FLOAT DEFAULT random() NOT NULL,
clientId INTEGER REFERENCES Client(id),
itemId INTEGER REFERENCES Item(id),
created TIMESTAMP DEFAULT now() NOT NULL,
quantity BIGINT NOT NULL,
PRIMARY KEY(purchaseNo)

) ;� �
Listing 1: dbSchema.sql

5.1 Test cases design 75 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

The use of non-deterministic functions is not a coincidence, but is one of
the main objectives of the research. It is important to know how the cho-
sen clustering frameworks handle these commands. Additionally, it is also
interesting to test, how the entities' dependencies are processed which are
implemented by the use of the foreign keys.

5.1.3. PGPool-II Configuration

Figure 15 schematically represents the clustering solution using the PGPool-
II framework.

Figure 15: PGPool-II con�guration

As already described in the previous chapter, PGPool comes bundled with
a built-in connection pooler, load balancer and query partitioner, so no
additional software is needed. The detailed PGPool con�guration is given
in the Appendix A.

5.1 Test cases design 76 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

5.1.4. Slony-I Configuration

Slony, however, provides neither a connection pooler nor a load balancer.
The project concentrates solely on database replication. Therefore, we have
chosen to test the following con�gurations:

1. We bundle Slony-I with PGPool-II. The PGPool framework is used
only for connection pooling and load balancing. The database repli-
cation is done via Slony. Figure 16 illustrates the proposed solution.
The detailed con�guration for both software components is found in
the Appendix B.

Figure 16: Slony con�guration with PGPool

2. Another approach is to use SkyTools (pgBouncer for connection pool-
ing and plProxy for load balancing) instead of PGPool. Figure 17
illustrates the idea.

5.1 Test cases design 77 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 17: Slony con�guration with SkyTools

The point of using two di�erent frameworks for load balancing and con-
nection pooling is to see, whether it is possible to gain some performance
advantage by using SkyTools over PGPool. PGPool relies solely on session
based pooling, at the same time, it is possible to tweak SkyTool into using
a transaction or a statement based pooling which might bring an additional
performance boost to the cluster.

5.1.5. Londiste

Londiste comes bundled with SkyTools, thus it is possible to design a clus-
tering solution based only on the SkyTools packages (see Figure 18).

Both Londiste and Slony implement asynchronous replication, so it is pos-
sible to draw a direct performance comparison between these two projects.

5.1 Test cases design 78 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Figure 18: Londiste con�guration

The Londiste (the same pgBouncer and plProxy con�gurations is used here)
con�guration is found in the Appendix C.

5.1.6. Test cases

As a second step, test cases of di�erent complexity and benchmarking cri-
teria have to be de�ned. The following test cases are de�ned to be run with
each of the settings described above:

1. Write � creates new records for each entity.

2. Modify � updates all created records.

3. Read/Write � combined read and write operations.

5.1 Test cases design 79 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

It has to be noted, that all the operations are carried out against the cluster.
Clients open connections to the logical database interface and not to the
database node(s). Thus all the database schema changes are executed on all
the nodes in the cluster if a framework in question supports it (e.g., when
PGPool is used, manual schema adjustments have to be carried out other-
wise). Additionally, all the test cases are run against a single PostgreSQL
instance for performance comparison.

The test cases have the following con�guration:

• a number of transactions per client � 1.000 (one thousand)

• a number of concurrent clients � one, �ve and ten respectively.

• all the nodes in the cluster have an equal priority.

• the connection pool size is set to �ve.

There were a couple of options how to run the tests against the cluster:
whether to use an existing benchmarking tool (pgPerformer34) or to develop
a new one. The author of this paper decided to develop a new one for the
following reasons:

• not all of the clustering approaches replicate the changes to the database
schema, thus it would require to create all the tables required by pgPer-
former separately on each node, for each test case and for each tested
framework.

• there is no macro language in pgPerformer, i.e, it is not �exible in the
case that some speci�c function is required.

The program was designed using Java programming language. In order to
achieve some abstraction level, the author used the SpringFramework 35

which provides a JdbcTemplate for database operations and XML beans
de�nitions for beans wiring. The complete source code of the project is
found at https://svn.semanticlab.net/svn/oss/thesis/pgcluster.
34http://www.semanticlab.net/index.php/Pgperformer
35http://www.springframework.org

5.1 Test cases design 80 of 106

https://svn.semanticlab.net/svn/oss/thesis/pgcluster

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Each test case is repeated three times, the average execution time and the
standard deviation are calculated. The test cases schema with the test result
for a single PostgreSQL instance is provided in Table 6.

Test performed Concurrent clients Avg. exec time (t1) TX per sec (t2) σ (t2)

write

1 2.958 338 3.08

5 9.119 548 5.51

10 16.949 590 4.51

modify

1 631 1.585 2.00

5 2.534 1.973 7.00

10 5.094 1.963 2.08

read/write

1 3.885 514 8.54

5 11.022 906 5.77

10 20.780 962 2.52

Table 6: PostgreSQL single instance - test results

Figure 19 graphically illustrates the performance of a single PostgreSQL
instance.

It is also interesting to investigate the performance penalty a clustering
solution introduces to a project. Therefore the performance of a single
PostgreSQL instance was included as a base line in the test setting.

5.2. Test case 1 - PGPool

Setting up PGPool is easy and self explanatory. The installation on a
Ubuntu machine is straightforward using the apt-get package manager. It
provides a user with a complete pre-con�gured package and comes with a
rich documentation. The framework's web site is a great resource which
provides all the needed documentation and has a community forum. The
community support is outstanding. The con�guration �les are self explana-
tory, it took no time to con�gure the cluster de�ned for this paper.

Table 7 provides the tests results:

5.2 Test case 1 - PGPool 81 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

338	

548	
 590	

1585	

1973	
 1963	

514	

906	
 962	

0	

500	

1000	

1500	

2000	

2500	

0	
 2	
 4	
 6	
 8	
 10	
 12	

TX
	
 p
er
	
 s
ec
on

d	

Concurrent	
 clients	

PostgreSQL	
 performance	

Insert	
 Modify	
 Read/Write	

Figure 19: PostgreSQL performance

Test performed Concurrent clients Avg. exec time (t1) TX per sec (t2) σ (t2)

write

1 23.810 42 3.39

5 62.500 80 4.10

10 99.010 101 2.59

modify

1 4.762 210 4.01

5 17.241 290 5.49

10 32.154 311 5.39

read/write

1 22.221 90 4.49

5 72.993 137 5.68

10 129.870 154 3.48

Table 7: PGPool - test results

The PGPool performance is visualized in Figure 20.

Obviously, synchronous replication is a very expensive. Judging from the
results above, PGPool is at least �ve times slower than a single PostgreSQL

5.2 Test case 1 - PGPool 82 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

42	

80	

101	

210	

290	

311	

90	

137	

154	

0	

50	

100	

150	

200	

250	

300	

350	

0	
 2	
 4	
 6	
 8	
 10	
 12	

TX
	
 p
er
	
 s
ec
on

d	

Concurrent	
 clients	

PGPool	
 performance	

Insert	
 Modify	
 Read/Write	

Figure 20: PGPool performance

instance. Therefore such a replication strategy makes sense only, if data
integrity and consistency have a high priority. It also makes sense to im-
plement such a replication within the local network, where the network
availability could be guaranteed.

PGPool has also a couple of serious drawbacks which came up during the
tests:

• it does not handle non-deterministic functions. Such commands as
now() or random() are executed on each server, producing independent
and inconsistent results.

• the sequences are treated independently by each server as well.

• session wise load balancing, i.e., all the read-only requests are processed
by one node and not balanced between the nodes in the cluster. It is
not possible to de�ne a transaction or a statement wise load balancing.
It results in a poor read-only performance.

5.2 Test case 1 - PGPool 83 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Considering the problems listed above, it is hardly imaginable using PG-
Pool as it is. There are two possible solutions to the raised issues: to
use some intermediate layer which intercepts, executes and substitutes non-
deterministic functions. Another possible solution would be to adjust the
application code itself and to use non-deterministic functions built-in the
application programming language. In any way, independent which ap-
proach is chosen, it requires some extra work in order to avoid the problems
listed above.

5.3. Test case 2 - Slony

Installing and setting up Slony for data replication is a way more compli-
cated than PGPool and requires quite a bit of con�guration. The project
web-site provides extended documentation and outstanding support. Al-
though a learning curve exists, it helps to understand the underlying tech-
nology and the �exibility of this clustering approach. The Ubuntu package
comes completely pre-con�gured. Although, the authors of the project con-
sider load balancing and connection pooling not the part of the project, it
would be a welcomed feature. Therefore, we are going to use PGPool and
SkyTools.

The Slony cluster con�guration is found in Appendix B. In contrast to
PGPool, a cluster namespace has to be de�ned in the �rst place. At ini-
tialization time of every node, Slony creates its own special con�guration
tables, where the con�guration and replication state information is stored.
Each node is identi�ed by a number, so some cluster planning is required
for complex con�gurations in advance, as nodes renumbering is not possi-
ble at a later stage. The following requirements have to be met for Slony
replication:

• Slony-I needs to have primary keys con�gured. If a table does not have
a primary key, Slony will create it.

• a list of tables is required, i.e., replication sets should be de�ned.

5.3 Test case 2 - Slony 84 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• sequences to be replicated have to be de�ned in advance too.

Running the write, modify and combined read-write tests produced the
results represented in Table 8:

Test performed Concurrent clients Avg. exec time (t1) TX per sec (t2) σ (t2)

write

1 6.211 161 4.11

5 16.393 305 6.75

10 25.907 386 5.70

modify

1 1.527 655 4.93

5 6.258 799 5.24

10 10.718 933 4.58

read/write

1 6.173 324 6.18

5 17.544 570 5.38

10 30.817 549 4.48

Table 8: Slony - test results

Figure 21 graphically represents the performance of Slony.

It is clear, that using asynchronous replication delivers a signi�cant perfor-
mance boost in comparison to synchronous replication. During the tests,
PGPool was substituted with SkyTools in order to analyze the performance
di�erences. In general, the performance of these frameworks, when it comes
to connection pooling and load balancing, seems to be comparable. Testing
Slony with PGPool and SkyTools did not deliver any signi�cant performance
di�erences.

An obvious advantage of using Slony over PGPool replication is that it does
not execute non-deterministic functions on each node, but rather copies the
complete database entry. The other plus, which speaks for using Slony,
despite of the con�guration and planning overhead, is, that it is quite �exible
and a user may de�ne any number of replication sets and rules.

5.3 Test case 2 - Slony 85 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

161	

305	

386	

655	

799	

933	

324	

570	
 549	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	
 2	
 4	
 6	
 8	
 10	
 12	

TX
	
 p
er
	
 s
ec
on

d	

Concurrent	
 clients	

Slony	
 performance	

Insert	
 Modify	
 Read/Write	

Figure 21: Slony performance

5.4. Test case 3 - Londiste

In comparison to PGPool and Slony, setting up Londiste 2.1.8 under Ubuntu
9.04 (see Appendix C for con�guration �les) is not easy, despite of the
provided documentation. Installing SkyTools requires some tweaking as
the package maintainer compiled the package only for Python 2.5, therefore
some knowledge or at least understanding of Python is necessary. First of
all, it does not work with any version of Python, but 2.5. For test purposes
Python was downgraded to the version 2.5. The problems listed above are
not connected with SkyTools directly, but are rather the problems of the
Ubuntu package.

The asynchronous replication with Londiste produced the results repre-
sented in Table 9:

5.4 Test case 3 - Londiste 86 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Test performed Concurrent clients Avg. exec time (t1) TX per sec (t2) σ (t2)

write

1 4.405 227 3.42

5 15.625 320 5.01

10 24.938 401 4.60

modify

1 1.490 671 4.30

5 6.211 805 4.91

10 9.515 1051 3.01

read/write

1 5.587 358 3.90

5 16.863 593 3.00

10 28.289 707 2.34

Table 9: Londiste - test results

Figure 22 illustrates the performance of the Londiste framework.

227	

320	

401	

671	

805	

1051	

358	

593	

707	

0	

200	

400	

600	

800	

1000	

1200	

0	
 2	
 4	
 6	
 8	
 10	
 12	

TX
	
 p
er
	
 s
ec
on

d	

Concurrent	
 clients	

Londiste	
 performance	

Insert	
 Modify	
 Read/Write	

Figure 22: Londiste performance

Compared to Slony, there are some minor performance di�erences, especially
when it comes to record modi�cations. During the testing the following
particularities were found out:

5.4 Test case 3 - Londiste 87 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

• Londiste does handle non-deterministic functions and copies the en-
tries to the subscribed nodes, rather than executing non-deterministic
functions on each dependent slave.

• PgQ guarantees that the changes made to the master will be repli-
cated in exact order to the subscribed nodes, as soon as they become
available.

• the changes to a database schema are not replicated automatically, but
have to be executed separately on each node in the cluster.

• it is also not possible to replicate the whole database, but each table
has to be subscribed explicitly.

5.5. Evaluation

The evaluation section summarizes the three reviewed approaches, investi-
gates the major di�culties and evaluates the tested clustering solutions. It
is rather impossible to compare these clustering approaches directly: PG-
Pool uses synchronous replication which is much slower than asynchronous
one. It does not mean that it is a bad approach per se. There are some cases
when synchronous replication makes a lot of sense and is required, despite
of the speed penalty, e.g., when data integrity is mission critical. On the
other hand, it is not always practical to use synchronous replication as well.
When databases are divided geographically it is more advisable to use asyn-
chronous over synchronous replication, otherwise the cluster performance
would be the system's bottleneck. Therefore only Slony and Londiste were
compared directly to each other. Slony is a mature feature-full framework
and Londiste, being a part of SkyTools project, is a collection of Python
scripts, triggered by PostgreSQL functions to do the replication. Although
it is written in Python, it does the job right and provides minor performance
advantages over Slony.

Table 10 sums up the performance of each framework measured in a number
of transactions per second:

5.5 Evaluation 88 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

Test performed Concurrent clients PGPool Slony Londiste

write

1 42 161 227

5 80 305 320

10 101 386 401

modify

1 210 655 671

5 290 799 805

10 311 933 1051

read/write

1 90 324 358

5 137 570 593

10 154 649 707

Table 10: Performance comparison - test results

Table 11 lists important clustering features supported by the tested frame-
works:

Feature PGPool Slony Londiste

Con�guration and Installation Easy Easy to medium Easy to medium

Community support Very good Very good Good

Ease of maintenance Very easy Medium Medium

Supported features Rich Medium to rich Poor

Replication method used Sync. Async. Async

Load balancer Yes No Using SkyTools

Connection pooler Yes No Using SkyTools

Query partitioner Yes No No

Failover solution Yes No No

Replication performance Very slow Fast Fast

Schema replication Yes No No

Replication sets support No Yes Yes

Non-deterministic funcs No Yes Yes

Table 11: PostgreSQL clustering approaches comparison

Although Slony and Londiste do not have a load balancer, connection pooler
and do not provide any failover management in case a master node goes
down, it is still possible to use a third party frameworks to provide this

5.5 Evaluation 89 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

functionality, e.g., one possible solution would be to use PGPool itself for
this purpose and use Slony or Londiste for replication, as we demonstrated
in our tests. SkyTools is a good alternative too, although we encountered
some problems under Ubuntu during the installation.

It has to be underlined, that using one or another solution highly depends
on a speci�c situation and user requirements for a cluster. The good thing
about Open Source Software is, that a user could bundle and adapt the
frameworks to his speci�c needs, thus building a custom solution which
does the job right. It is not di�cult, if needed, to design a cluster and
use any of the reviewed frameworks, but it is rather important to know the
limitations and drawbacks of a solution in advance.

5.5 Evaluation 90 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

6. Outlook and conclusion

The goal of this research paper was to contribute to the understanding of
database replication technologies available on the market today. We out-
lined the theoretical background of database replication, provided the main
de�nitions and identi�ed possible problems. Performance, availability and
management issues were spelled out and addressed. Two popular com-
mercial DBMS and their OS counterparts were thoroughly reviewed, their
features compared and the clustering approaches analyzed.

The research revealed, that the commercial o�ering from IBM and Oracle
are much more advanced, feature-full and mature when it comes to a clus-
ter implementation. These products provide complete clustering solutions
which meet all the pre-de�ned criteria including load balancing, query par-
titioning, connection pooling and transparent failover management. The
OS products, on the other hand, have their limitations: MySQL Cluster
o�ers only asynchronous replication and PostgreSQL does not provide any
clustering product, but rather relies on third party frameworks.

We investigated the available clustering frameworks for PostgreSQL (com-
mercial and Open Source ones) and chose the most suitable ones based on
the de�ned criteria � PGPool, Slony and Londiste. These frameworks were
then stress tested, their performance analyzed and their advantaged and
drawbacks outlined. As the frameworks in question use di�erent replica-
tion methods, it was also possible to show the di�erences in performance
and propose the areas of their usage. Synchronous replication, as provided
by PGPool, is much slower than the asynchronous one, but it does guar-
antee data consistency at any time. On the other hand, it makes sense
to use synchronous replication only if network availability could be guaran-
teed. Londiste and Slony provide asynchronous replication and deliver both
acceptable performance. These solutions, however, provide neither a load
balancer nor a connection pooler. Failover management is not included in
these products as well. The PGPool framework could be setup as a higher
layer for Londiste and Slony in order to compensate for the missing features,

Outlook and conclusion 91 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

but at the same time it cannot handle non-deterministic functions properly.
Such a limitation forces a developer to adapt the database schema accord-
ingly or to use SkyTools as an alternative. To draw the line, the research
revealed the following weak points in tested frameworks:

• each framework supports only one replication method, i.e., synchronous
or asynchronous.

• PGPool does not provide full non-deterministic functions support.

• Slony and Londiste do not replicate database schema changes auto-
matically.

• load balancing, connection pooling and failover management must be
con�gured separately in Slony and Londiste.

To conclude, we have to stress, that despite of the fact, that the chosen
frameworks could not be directly seen as competitors to the commercial
o�erings from IBM and Oracle, it is still possible to implement a feature-
full and reliable database cluster using the combination of these products.
We also suggested a couple of approaches for implementing a PostgreSQL
clustering solution based on SkyTools or PGPool for cluster management
and Slony or Londiste for data replication. It must be noted, that despite
of the fact, that the Postgres-R framework was not tested and compared
in this paper, as it is still in development, the solution per-se looks very
promising.

Outlook and conclusion 92 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

A. Appendix: PGPool configuration

The IP addresses of all the nodes are de�ned in the system /etc/hosts �le� �
172.16.201.132 vus2
172.16.201.133 vus3� �

Listing 2: /etc/hosts

The default pgpool installation has to be modi�ed, as listed bellow:� �
Replication mode
replication_mode = true

Load balacing mode, i.e., all SELECTs except in a transaction block
are load balanced. This is ignored if replication_mode is false .
load_balance_mode = true

If true, operate in master/slave mode.
master_slave_mode = false

IMPORTANT, especially using jdbc drivers
ignore_leading_white_space = true

system DB info
system_db_hostname = 'localhost'
system_db_port = 5432

database master node
backend_hostname0 = 'vus'
backend_port0 = 5432
backend_weight0 = 1

database slave 1
backend_hostname0 = 'vus2'

Appendix: PGPool con�guration 93 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

backend_port0 = 5432
backend_weight0 = 1

database slave 2
backend_hostname0 = 'vus3'
backend_port0 = 5432
backend_weight0 = 1� �

Listing 3: /etc/pgpool.cfg

B. Appendix: Slony configuration

The following script de�nes the cluster and subscription sets:� �
#!/bin/sh

CLUSTERNAME='cluster_replica'
RUSER='postgres'

DBNAME='replica'
MASTERHOST='vus'
SLAVE1='vus2'
SLAVE2='vus3'

installing pl/pgSQL procedural language
createlang −U $RUSER −h vus plpgsql replica
createlang −U $RUSER −h vus2 plpgsql replica
createlang −U $RUSER −h vus3 plpgsql replica

slonik << _EOF_
#−−
De�ne cluster and nodes
#−−

Appendix: Slony con�guration 94 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

cluster name = $CLUSTERNAME;
node 1 admin conninfo = 'dbname=$DBNAME host=$MASTERHOST

user=$RUSER';
node 2 admin conninfo = 'dbname=$DBNAME host=$SLAVE1 user=

$RUSER';
node 3 admin conninfo = 'dbname=$DBNAME host=$SLAVE2 user=

$RUSER';

#−−
Init master node
#−−
init cluster (id=1, comment = 'Master DB');

#−−
De�ne a replication set
#−−
create set (id=1, origin=1, comment='Replication Set');
set add table (set id=1, origin=1, id=1, fully quali�ed name='public.

client') ;
set add table (set id=1, origin=1, id=2, fully quali�ed name='public.

item');
set add table (set id=1, origin=1, id=3, fully quali�ed name='public.

client_item');

#−−
Create slave1
#−−
store node (id=2, comment = 'Slave1');
store path (server = 1, client = 2, conninfo = 'dbname=$DBNAME

host=$MASTERHOST user=$RUSER');
store path (server = 2, client = 1, conninfo = 'dbname=$DBNAME

host=$SLAVE1 user=$RUSER');

Appendix: Slony con�guration 95 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

#−−
Create slave2
#−−
store node (id=3, comment = 'Slave2');
store path (server = 1, client = 3, conninfo = 'dbname=$DBNAME

host=$MASTERHOST user=$RUSER');
store path (server = 3, client = 1, conninfo = 'dbname=$DBNAME

host=$SLAVE1 user=$RUSER');
EOF

Start replication engine
slon $CLUSTERNAME "dbname=$DBNAME user=$RUSER host=

$MASTERHOST"� �
Listing 4: slony_setup.sh

After the daemons are started, the nodes have to subscribe for the set, as
outlined before:� �
#!/bin/sh

CLUSTERNAME='cluster_replica2'
RUSER='postgres'

DBNAME='replica'
MASTERHOST='vus'
SLAVE1='vus2'
SLAVE2='vus3'

slonik <<_EOF_

cluster name = $CLUSTERNAME;

node 1 admin conninfo = 'dbname=$DBNAME host=$MASTERHOST
user=$RUSER';

Appendix: Slony con�guration 96 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

node 2 admin conninfo = 'dbname=$DBNAME host=$SLAVE1 user=
$RUSER';

node 3 admin conninfo = 'dbname=$DBNAME host=$SLAVE2 user=
$RUSER';

subscribe set (id = 1, provider = 1, receiver = 2, forward = no);
subscribe set (id = 1, provider = 1, receiver = 3, forward = no);
EOF� �

Listing 5: slony_subscribe.sh

After executing of this script, the slaves start the replication and apply all
the changes continuosly.

C. Appendix: Londiste configuration

Ticker has to be con�gured and started in order to reference master database
as follows:� �
[pgqadm]
job_name = ticker_replica
db = dbname=replica user=postgres

how often to run maintenance [seconds]
maint_delay = 600

how often to check for activity [seconds]
loop_delay = 0.1
log�le = ~/londiste/log/%(job_name)s.log
pid�le = ~/londiste/log/%(job_name)s.pid� �

Listing 6: ticker.ini

Each subscriber (slave node) needs a replication daemon and therefore a
con�guration �le for londiste has to be de�ned:

Appendix: Londiste con�guration 97 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

� �
[londiste]
job_name = replica_subcriber

provider_db = dbname=replica user=postgres port=5432 host=vus
subscriber_db = dbname=replica user=postgres port=5432 host=vus2

it will be used as sql ident so no dots/spaces
pgq_queue_name = qreplica

log�le = ~/londiste/log/%(job_name)s.log
pid�le = ~/londiste/log/%(job_name)s.pid� �

Listing 7: master_to_slave.ini

Appendix 98 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

References

Literature

[AAA+96] Alonso, Gustavo; Agrawal, Divyakant; Abbadi, Amr E.;
Kamath, Mohan; Guenthoer, Roger; Mohan, C.: Ad-
vanced Transaction Models in Work�ow Contexts. In: ICDE
'96: Proceedings of the Twelfth International Conference on
Data Engineering. Washington, DC, USA : IEEE Computer
Society, 1996, p. 574�581

[AAAS97] Agrawal, Divyakant; Alonso, Gustavo; Abbadi, Amr E.;
Stanoi, Ioana: Exploiting Atomic Broadcast in Replicated
Databases. In: Euro-Par '97: Proceedings of the Third Inter-
national Euro-Par Conference on Parallel Processing. Lon-
don, UK : Springer-Verlag, 1997, p. 491�507

[ABKW98] Anderson, Todd; Breitbart, Yuri; Korth, Henry F.;
Wool, Avishai: Replication, consistency, and practicality:
are these mutually exclusive? In: SIGMOD '98: Proceed-
ings of the 1998 ACM SIGMOD international conference on
Management of data. New York, NY, USA : ACM, 1998, p.
472�495

[AEAS97] Agrawal, D.; El Abbadi, A.; Steinke, R. C.: Epidemic
algorithms in replicated databases. In: PODS '97: Proceed-
ings of the sixteenth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems. New York, NY,
USA : ACM, 1997, p. 161�175

[ANY04] Agrawal, Sanjay; Narasayya, Vivek; Yang, Beverly: In-
tegrating vertical and horizontal partitioning into automated
physical database design. In: SIGMOD '04: Proceedings of
the 2004 ACM SIGMOD international conference on Manage-
ment of data. New York, NY, USA : ACM, 2004, p. 359�370

Appendix 99 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[BBG+95] Berenson, Hal; Bernstein, Phil; Gray, Jim; Melton,
Jim; O'Neil, Elizabeth; O'Neil, Patrick: A critique of
ANSI SQL isolation levels. In: SIGMOD '95: Proceedings
of the 1995 ACM SIGMOD international conference on Man-
agement of data. New York, NY, USA : ACM, 1995, p. 1�10

[BHG87] Bernstein, Philip A.; Hadzilacos, Vassco; Goodman,
Nathan: Concurrency control and recovery in database sys-
tems. Boston, MA, USA : Addison-Wesley Longman Publish-
ing Co., Inc., 1987

[BK97] Breitbart, Yuri; Korth, Henry F.: Replication and con-
sistency: being lazy helps sometimes. In: PODS '97: Pro-
ceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. New York, NY,
USA : ACM, 1997, p. 173�184

[BKR+99] Breitbart, Yuri; Komondoor, Raghavan; Rastogi, Ra-
jeev; Seshadri, S.; Silberschatz, Avi: Update propaga-
tion protocols for replicated databates. In: SIGMOD '99:
Proceedings of the 1999 ACM SIGMOD international confer-
ence on Management of data. New York, NY, USA : ACM,
1999, p. 90�108

[CRR96] Chundi, Parvathi; Rosenkrantz, Daniel J.; Ravi,
S. S.: Deferred Updates and Data Placement in Distributed
Databases. In: ICDE '96: Proceedings of the Twelfth Inter-
national Conference on Data Engineering. Washington, DC,
USA : IEEE Computer Society, 1996, p. 469�476

[EN03] Elmasri, Ramez; Navathe, Shamkant B.: Fundamentals
of Database Systems, Fourth Edition. Boston, MA, USA :
Addison-Wesley Longman Publishing Co., Inc., 2003

[FAA99] Ferhatsomanoglu, Hakan; Agrawal, Divyakant; Ab-
badi, Amr E.: Clustering Declustered Data for E�cient Re-

Appendix 100 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

trieval. In: the Conference on Information and Knowledge
Management. Kansas City, Missouri, USA : ACM, November
1999, p. 343�350

[GBC+02] Gu, Lijun; Budd, Lloyd; Cayci, Aysegul; Hendricks,
Colin; Purnell, Micks; Rigdon, Carol: A practical guide to
db2 udb data replication v8. Riverton, NJ, USA : IBM Corp.,
2002

[GG97] Gay, Jean-Yves; Gruenwald, Le: A Clustering Technique
for Object-Oriented Databases. In: DEXA '97: Proceedings of
the 8th International Conference on Database and Expert Sys-
tems Applications. London, UK : Springer-Verlag, September
1997, p. 81�90

[GGK+05] Gervasi, Osvaldo; Gavrilova, Marina L.; Kumar, Vipin;
Lagana, Antonio; Lee, Heow P.; Mun, Youngsong;
Taniar, David; Tan, Chih Jeng K.: Computational Science
and Its Applications - ICCSA 2005: International Confer-
ence, Singapore, May 9-12, 2005, Proceedings, Part I (Lecture
Notes in Computer Science). Secaucus, NJ, USA : Springer-
Verlag New York, Inc., 2005

[GHOS96] Gray, Jim; Helland, Pat; O'Neil, Patrick; Shasha, Den-
nis: The dangers of replication and a solution. In: SIGMOD
'96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data. New York, NY, USA :
ACM, 1996, p. 173�182

[HSAA99] Holliday, J.; Steinke, R.; Agrawal, D.; Abbadi, A. E.
Epidemic Quorums for Managing Replicated Data. Santa Bar-
bara, CA, USA. 1999

[HT93] Hadzilacos, Vassos; Toueg, Sam: Fault-tolerant broad-
casts and related problems. New York, NY, USA : ACM
Press/Addison-Wesley Publishing Co., 1993

Appendix 101 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[JP03] Jmaiel, Mohamed; Pepper, Peter: Development of commu-
nication protocols using algebraic and temporal speci�cations.
In: Comput. Netw. 42 (2003), Nr. 6, p. 737�764. � ISSN 1389�
1286

[KGK95] Ketterlin, A.; Gancarski, P.; Korczak, J.J.: Con-
ceptual Clustering in Structured Databases: a Practical Ap-
proach. In: In Proc. of the 1st Internationall Conf. On Knowl-
edge Discovery and Data Mining. Quebec, Montreal : AAAI,
1995, p. 21�185

[KKH08] Kline, Kevin; Kline, Daniel; Hunt, Brand: SQL in a Nut-
shell. O'Reilly Media, Inc., 2008

[Kyt05] Kyte, Thomas: Expert Oracle Database Architecture: 9i
and 10g Programming Techniques and Solutions. Berkely, CA,
USA : Apress, 2005

[Ler07] Lerner, Reuven M.: Open-source databases, Part III: choos-
ing a database. In: Linux J. 2007 (2007), Nr. 158, p. 17. �
ISSN 1075�3583

[Mat97] Mattison, Rob: Understanding Database Management Sys-
tems. New York, NY, USA : McGraw-Hill, Inc., 1997

[MZSMM03] Marculescu, Diana; Zamora, Nicholas H.; Stanley-

Marbell, Phillip; Marculescu, Radu: Fault-Tolerant
Techniques for Ambient Intelligent Distributed Systems. In:
ICCAD '03: Proceedings of the 2003 IEEE/ACM interna-
tional conference on Computer-aided design. Washington,
DC, USA : IEEE Computer Society, 2003, p. 348

[Oja08] Oja, Asko. plProxy, pgBouncer, pgBalancer. Paritioning
databases and using remote calls. Ottawa, Ontario, Canada.
2008

Appendix 102 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[PMS99] Pacitti, Esther; Minet, Pascale; Simon, Eric: Fast Al-
gorithms for Maintaining Replica Consistency in Lazy Mas-
ter Replicated Databases. In: VLDB '99: Proceedings of
the 25th International Conference on Very Large Data Bases.
San Francisco, CA, USA : Morgan Kaufmann Publishers Inc.,
1999, p. 126�137

[PSM98] Pacitti, Esther; Simon, Eric; Melo, Rubens: Improving
Data Freshness in Lazy Master Schemes. In: ICDCS '98:
Proceedings of the The 18th International Conference on Dis-
tributed Computing Systems. Washington, DC, USA : IEEE
Computer Society, 1998, p. 160�171

[Rec01] Record, ACM S.: Using a Cluster Manager in a Spatial
Database System. In: Aref, Walid G. (Hrsg.): Proceedings
of the ninth ACM international symposium on Advances in
geographic information systems Bd. 27. Atlanta, GA, USA :
Brinkho�, 2001, p. 74�153

[SAA98] Stanoi, I.; Agrawal, D.; Abbadi, A. E.: Using Broadcast
Primitives in Replicated Databases. In: ICDCS '98: Proceed-
ings of the The 18th International Conference on Distributed
Computing Systems. Washington, DC, USA : IEEE Computer
Society, 1998, p. 145�155

[Tes07] Test, T. Je�rey: Surviving the next Database Disaster. Saar-
bruecken, Germany, Germany : VDM Verlag, 2007

[Tum04] Tumma, Madhu: Oracle Streams: High Speed Replication
and Data Sharing (Oracle In-Focus Series). Rampant Tech-
Press, 2004

[Wes07] Weske, Mathias: Business Process Management: Concepts,
Languages, Architectures. Secaucus, NJ, USA : Springer-
Verlag New York, Inc., 2007

Appendix 103 of 106

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[ZSG04] Zaman, Mujiba; Surabattula, Jyotsna; Gruenwald, Le:
An Auto-Indexing Technique for Databases Based on Cluster-
ing. In: DEXA '04: Proceedings of the Database and Expert
Systems Applications, 15th International Workshop. Wash-
ington, DC, USA : IEEE Computer Society, 2004, p. 776�780

Web sites

[Buc] Bucardo: Bucardo, asynchronous master-master and master-
slave replication system. Bucardo, http://bucardo.org/

bucardo.html, last checked: 04.06.2009

[Com] Command Prompt, Inc.: Mammoth PostgreSQL replication sys-
tem. Command Prompt, Inc., http://www.commandprompt.com/
products/mammothreplicator/, last checked: 04.06.2009

[Cyb] Cybercluster: CyberTec, Cybercluster for PostgreSQL.
Cybercluster, http://www.postgresql.at/english/pr_

cybercluster_e.html, last checked: 02.06.2009

[IBMa] IBM: Lock avoidance in DB2 UDB V8. IBM, http:

//www.ibm.com/developerworks/data/library/techarticle/

dm-0509schuetz/, last checked: 15.09.2009

[IBMb] IBM Corporation: IBM DB2 Information Center. IBM Corpo-
ration, http://publib.boulder.ibm.com/infocenter/db2luw/

v9r5/index.jsp, last checked: 15.04.2009

[Oraa] Oracle: Oracle Real Application Cluster, White Paper. Ora-
cle, http://www.oracle.com/technology/products/database/

clustering/pdf/twp_rac11g.pdf, last checked: 21.05.2009

[Orab] Oracle: Oracle Streams Replication, An Oracle White Pa-
per. Oracle, http://www.oracle.com/technology/products/

dataint/pdf/twp_streams_replication_11gr1.pdf, last
checked: 21.06.2009

Appendix 104 of 106

http://bucardo.org/bucardo.html
http://bucardo.org/bucardo.html
http://www.commandprompt.com/products/mammothreplicator/
http://www.commandprompt.com/products/mammothreplicator/
http://www.postgresql.at/english/pr_cybercluster_e.html
http://www.postgresql.at/english/pr_cybercluster_e.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0509schuetz/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0509schuetz/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0509schuetz/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://www.oracle.com/technology/products/database/clustering/pdf/twp_rac11g.pdf
http://www.oracle.com/technology/products/database/clustering/pdf/twp_rac11g.pdf
http://www.oracle.com/technology/products/dataint/pdf/twp_streams_replication_11gr1.pdf
http://www.oracle.com/technology/products/dataint/pdf/twp_streams_replication_11gr1.pdf

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[PGC] PGCluster: PGCluster, The Multi-master and synchronous
replication system. PGCluster, http://pgcluster.projects.

postgresql.org, last checked: 17.05.2009

[Posa] Postgres-R Foundation: Terms and De�nitions for Database
Replication. Postgres-R Foundation, http://www.postgres-r.

org/documentation/terms, last checked: 13.05.2009

[Posb] PostgreSQL Foundation: PGPool Introduction for beginners.
PostgreSQL Foundation, http://pgpool.projects.postgresql.
org, last checked: 05.06.2009

[Posc] PostgreSQL Global Development Group: Post-
greSQL Online Documentation. PostgreSQL Global Development
Group, http://www.postgresql.org/docs/8.3/static/index.
html, last checked: 27.05.2009

[Skya] Skype Developer Zone: Lightweight connection pooler
for PostgreSQL. Skype Developer Zone, https://developer.

skype.com/SkypeGarage/DbProjects/PgBouncer, last checked:
20.05.2009

[Skyb] Skype Developer Zone: SkyTools. Skype Developer Zone,
https://developer.skype.com/SkypeGarage/DbProjects/

SkyTools, last checked: 22.05.2009

[Slo] Slony-I: Slony-I, enterprise-level replication system. Slony-I,
http://www.slony.info/, last checked: 26.05.2009

[Sun] Sun Microsystems, Inc: MySQL Online Documentation. Sun
Microsystems, Inc, http://dev.mysql.com/doc/#cluster, last
checked: 03.06.2009

[Ver] Versant: Database scalability and clustering. Versant, http:
//www.versant.com/developer/resources/objectdatabase/

whitepapers/vsnt_whitepaper_scalability_clustering.pdf,
last checked: 13.08.2009

Appendix 105 of 106

http://pgcluster.projects.postgresql.org
http://pgcluster.projects.postgresql.org
http://www.postgres-r.org/documentation/terms
http://www.postgres-r.org/documentation/terms
http://pgpool.projects.postgresql.org
http://pgpool.projects.postgresql.org
http://www.postgresql.org/docs/8.3/static/index.html
http://www.postgresql.org/docs/8.3/static/index.html
https://developer.skype.com/SkypeGarage/DbProjects/PgBouncer
https://developer.skype.com/SkypeGarage/DbProjects/PgBouncer
https://developer.skype.com/SkypeGarage/DbProjects/SkyTools
https://developer.skype.com/SkypeGarage/DbProjects/SkyTools
http://www.slony.info/
http://dev.mysql.com/doc/#cluster
http://www.versant.com/developer/resources/objectdatabase/whitepapers/vsnt_whitepaper_scalability_clustering.pdf
http://www.versant.com/developer/resources/objectdatabase/whitepapers/vsnt_whitepaper_scalability_clustering.pdf
http://www.versant.com/developer/resources/objectdatabase/whitepapers/vsnt_whitepaper_scalability_clustering.pdf

Database Clustering with focus on PostgreSQL Dmitry V. Petrovsky, BSc. (WU)

[Wik] Wikipedia: Oracle Clusterware. Wikipedia, http:

//en.wikipedia.org/wiki/Oracle_Clusterware, last checked:
16.08.2009

Appendix 106 of 106

http://en.wikipedia.org/wiki/Oracle_Clusterware
http://en.wikipedia.org/wiki/Oracle_Clusterware

	Abbreviations
	List of Figures
	List of Tables
	Theory
	Introduction
	Database clustering and its importance
	Paper outline

	Clustering approaches
	Introduction to Database Replication
	Eager vs. Lazy Replication
	Replication in a cluster
	Known problems of traditional approaches
	Conflicts Management
	Communication Overhead
	Transactions and Isolation levels
	Fault tolerance

	Summary

	Implementations
	Commercial products
	Oracle Real Application Cluster
	DB2 Enterprise Server Edition

	Open Source Solutions
	MySQL Cluster
	PostgreSQL

	Summary

	Application
	Database clustering in PostgreSQL
	Commercial Products
	Mammoth Replicator
	Cybercluster
	Continuent Tungsten Enterprise

	Open Source Solutions
	Log shipping
	Postgres-R
	PGCluster
	Londiste
	Bucardo
	PGPpol-II
	Slony-I

	SkyTools
	Summary

	Evaluation
	Test cases design
	Cluster architecture
	Database schema
	PGPool-II Configuration
	Slony-I Configuration
	Londiste
	Test cases

	Test case 1 - PGPool
	Test case 2 - Slony
	Test case 3 - Londiste
	Evaluation

	Outlook and conclusion
	Appendix: PGPool configuration
	Appendix: Slony configuration
	Appendix: Londiste configuration
	References

